forked from open-mmlab/mmcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_arraymisc.py
69 lines (55 loc) · 2.13 KB
/
test_arraymisc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from __future__ import division
import mmcv
import numpy as np
import pytest
def test_quantize():
arr = np.random.randn(10, 10)
levels = 20
qarr = mmcv.quantize(arr, -1, 1, levels)
assert qarr.shape == arr.shape
assert qarr.dtype == np.dtype('int64')
for i in range(arr.shape[0]):
for j in range(arr.shape[1]):
ref = min(levels - 1,
int(np.floor(10 * (1 + max(min(arr[i, j], 1), -1)))))
assert qarr[i, j] == ref
qarr = mmcv.quantize(arr, -1, 1, 20, dtype=np.uint8)
assert qarr.shape == arr.shape
assert qarr.dtype == np.dtype('uint8')
with pytest.raises(ValueError):
mmcv.quantize(arr, -1, 1, levels=0)
with pytest.raises(ValueError):
mmcv.quantize(arr, -1, 1, levels=10.0)
with pytest.raises(ValueError):
mmcv.quantize(arr, 2, 1, levels)
def test_dequantize():
levels = 20
qarr = np.random.randint(levels, size=(10, 10))
arr = mmcv.dequantize(qarr, -1, 1, levels)
assert arr.shape == qarr.shape
assert arr.dtype == np.dtype('float64')
for i in range(qarr.shape[0]):
for j in range(qarr.shape[1]):
assert arr[i, j] == (qarr[i, j] + 0.5) / 10 - 1
arr = mmcv.dequantize(qarr, -1, 1, levels, dtype=np.float32)
assert arr.shape == qarr.shape
assert arr.dtype == np.dtype('float32')
with pytest.raises(ValueError):
mmcv.dequantize(arr, -1, 1, levels=0)
with pytest.raises(ValueError):
mmcv.dequantize(arr, -1, 1, levels=10.0)
with pytest.raises(ValueError):
mmcv.dequantize(arr, 2, 1, levels)
def test_joint():
arr = np.random.randn(100, 100)
levels = 1000
qarr = mmcv.quantize(arr, -1, 1, levels)
recover = mmcv.dequantize(qarr, -1, 1, levels)
assert np.abs(recover[arr < -1] + 0.999).max() < 1e-6
assert np.abs(recover[arr > 1] - 0.999).max() < 1e-6
assert np.abs((recover - arr)[(arr >= -1) & (arr <= 1)]).max() <= 1e-3
arr = np.clip(np.random.randn(100) / 1000, -0.01, 0.01)
levels = 99
qarr = mmcv.quantize(arr, -1, 1, levels)
recover = mmcv.dequantize(qarr, -1, 1, levels)
assert np.all(recover == 0)