forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalization.py
72 lines (63 loc) · 3.09 KB
/
normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Online data normalization."""
import sonnet as snt
import tensorflow.compat.v1 as tf
class Normalizer(snt.AbstractModule):
"""Feature normalizer that accumulates statistics online."""
def __init__(self, size, max_accumulations=10**6, std_epsilon=1e-8,
name='Normalizer'):
super(Normalizer, self).__init__(name=name)
self._max_accumulations = max_accumulations
self._std_epsilon = std_epsilon
with self._enter_variable_scope():
self._acc_count = tf.Variable(0, dtype=tf.float32, trainable=False)
self._num_accumulations = tf.Variable(0, dtype=tf.float32,
trainable=False)
self._acc_sum = tf.Variable(tf.zeros(size, tf.float32), trainable=False)
self._acc_sum_squared = tf.Variable(tf.zeros(size, tf.float32),
trainable=False)
def _build(self, batched_data, accumulate=True):
"""Normalizes input data and accumulates statistics."""
update_op = tf.no_op()
if accumulate:
# stop accumulating after a million updates, to prevent accuracy issues
update_op = tf.cond(self._num_accumulations < self._max_accumulations,
lambda: self._accumulate(batched_data),
tf.no_op)
with tf.control_dependencies([update_op]):
return (batched_data - self._mean()) / self._std_with_epsilon()
@snt.reuse_variables
def inverse(self, normalized_batch_data):
"""Inverse transformation of the normalizer."""
return normalized_batch_data * self._std_with_epsilon() + self._mean()
def _accumulate(self, batched_data):
"""Function to perform the accumulation of the batch_data statistics."""
count = tf.cast(tf.shape(batched_data)[0], tf.float32)
data_sum = tf.reduce_sum(batched_data, axis=0)
squared_data_sum = tf.reduce_sum(batched_data**2, axis=0)
return tf.group(
tf.assign_add(self._acc_sum, data_sum),
tf.assign_add(self._acc_sum_squared, squared_data_sum),
tf.assign_add(self._acc_count, count),
tf.assign_add(self._num_accumulations, 1.))
def _mean(self):
safe_count = tf.maximum(self._acc_count, 1.)
return self._acc_sum / safe_count
def _std_with_epsilon(self):
safe_count = tf.maximum(self._acc_count, 1.)
std = tf.sqrt(self._acc_sum_squared / safe_count - self._mean()**2)
return tf.math.maximum(std, self._std_epsilon)