forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredicate_task_test.py
267 lines (247 loc) · 9.28 KB
/
predicate_task_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for box_arrangement.predicate_task."""
from absl.testing import absltest
from dm_control import composer
from dm_control.entities import props
from dm_control.locomotion import arenas
from dm_control.locomotion import walkers
import numpy as np
from box_arrangement import predicate_task
from box_arrangement import predicates
_EGOCENTRIC_OBSERVABLES = [
"walker/body_height",
"walker/end_effectors_pos",
"walker/joints_pos",
"walker/joints_vel",
"walker/sensors_accelerometer",
"walker/sensors_gyro",
"walker/sensors_velocimeter",
"walker/world_zaxis",
]
class PredicateTaskTest(absltest.TestCase):
def _setup_basic_gtt_task(self, num_targets=1, reward_scale=1.0):
walker = walkers.Ant()
text_maze = arenas.padded_room.PaddedRoom(
room_size=8, num_objects=2, pad_with_walls=True)
maze_arena = arenas.MazeWithTargets(maze=text_maze)
targets = []
for _ in range(num_targets):
targets.append(
props.PositionDetector(
pos=[0, 0, 0.5],
size=[0.5, 0.5, 0.5],
inverted=False,
visible=True))
test_predicates = [predicates.MoveWalkerToRandomTarget(walker, targets)]
self._task = predicate_task.PredicateTask(
walker=walker,
maze_arena=maze_arena,
predicates=test_predicates,
targets=targets,
randomize_num_predicates=False,
reward_scale=reward_scale,
terminating_reward_bonus=2.0,
)
random_state = np.random.RandomState(12345)
self._env = composer.Environment(self._task, random_state=random_state)
self._walker = walker
self._targets = targets
def test_observables(self):
self._setup_basic_gtt_task()
timestep = self._env.reset()
self.assertIn("predicate_0", timestep.observation)
self.assertIn("walker/target_positions", timestep.observation)
for observable in _EGOCENTRIC_OBSERVABLES:
self.assertIn(observable, timestep.observation)
def test_termination_and_discount(self):
self._setup_basic_gtt_task()
self._env.reset()
target_pos = (0, 0, 0.5)
# Initialize the walker away from the target.
self._walker.set_pose(
self._env.physics, position=(-2, 0, 0.0), quaternion=(1, 0, 0, 0))
self._targets[0].set_position(
self._env.physics,
target_pos)
self._env.physics.forward()
zero_action = np.zeros_like(self._env.physics.data.ctrl)
for _ in range(10):
timestep = self._env.step(zero_action)
self.assertEqual(timestep.discount, 1.0)
self.assertEqual(timestep.reward, 0.0)
walker_pos = (0, 0, 0.0)
self._walker.set_pose(
self._env.physics,
position=walker_pos)
self._env.physics.forward()
# For a single predicate, first the reward is +1.0 for activating the
# predicate
timestep = self._env.step(zero_action)
self.assertEqual(timestep.discount, 1.0)
self.assertEqual(timestep.reward, 1.0)
# If the predicate is active and *remains* active, the discount gets to 0.0
# and the terminating reward bonus is given.
timestep = self._env.step(zero_action)
self.assertEqual(timestep.discount, 0.0)
self.assertEqual(timestep.reward, 2.0)
# Make sure this is a termination step.
self.assertTrue(timestep.last())
def test_reward_scaling(self):
self._setup_basic_gtt_task(reward_scale=10.0)
self._env.reset()
zero_action = np.zeros_like(self._env.physics.data.ctrl)
target_pos = (0, 0, 0.5)
walker_pos = (0, 0, 0.0)
self._targets[0].set_position(self._env.physics, target_pos)
self._walker.set_pose(self._env.physics, position=walker_pos)
self._env.physics.forward()
# For a single predicate, first the reward is +1.0 for activating the
# predicate
timestep = self._env.step(zero_action)
self.assertEqual(timestep.discount, 1.0)
self.assertEqual(timestep.reward, 10.0)
# If the predicate is active and *remains* active, the discount gets to 0.0
# and the terminating reward bonus is given.
timestep = self._env.step(zero_action)
self.assertEqual(timestep.discount, 0.0)
self.assertEqual(timestep.reward, 20.0)
# Make sure this is a termination step.
self.assertTrue(timestep.last())
def test_too_few_predicates_raises_exception(self):
walker = walkers.Ant()
num_targets = 1
text_maze = arenas.padded_room.PaddedRoom(
room_size=8, num_objects=2, pad_with_walls=True)
maze_arena = arenas.MazeWithTargets(maze=text_maze)
targets = []
for _ in range(num_targets):
targets.append(
props.PositionDetector(
pos=[0, 0, 0.5],
size=[0.5, 0.5, 0.5],
inverted=False,
visible=True))
test_predicates = []
with self.assertRaisesWithLiteralMatch(
ValueError, "Not enough predicates for task."
" The maximum number of "
"predicates can be "
"1 but only 0 predicates provided."):
predicate_task.PredicateTask(
walker=walker,
maze_arena=maze_arena,
predicates=test_predicates,
targets=targets,
randomize_num_predicates=False,
reward_scale=1.0,
terminating_reward_bonus=2.0,
)
def test_error_too_few_targets(self):
walker = walkers.Ant()
num_targets = 5
text_maze = arenas.padded_room.PaddedRoom(
room_size=8, num_objects=2, pad_with_walls=True)
maze_arena = arenas.MazeWithTargets(maze=text_maze)
targets = []
for _ in range(num_targets):
targets.append(
props.PositionDetector(
pos=[0, 0, 0.5],
size=[0.5, 0.5, 0.5],
inverted=False,
visible=True))
test_predicates = [predicates.MoveWalkerToRandomTarget(walker, targets)]
task = predicate_task.PredicateTask(
walker=walker,
maze_arena=maze_arena,
predicates=test_predicates,
targets=targets,
randomize_num_predicates=False,
reward_scale=1.0,
terminating_reward_bonus=2.0,
)
random_state = np.random.RandomState(12345)
env = composer.Environment(task, random_state=random_state)
with self.assertRaisesWithLiteralMatch(
RuntimeError, "The generated maze does not contain enough target "
"positions for the requested number of props (0) and targets (5): "
"got 2."
):
env.reset()
def test_error_if_no_predicates_found(self):
walker = walkers.Ant()
num_targets = 2
text_maze = arenas.padded_room.PaddedRoom(
room_size=8, num_objects=6, pad_with_walls=True)
maze_arena = arenas.MazeWithTargets(maze=text_maze)
targets = []
for _ in range(num_targets):
targets.append(
props.PositionDetector(
pos=[0, 0, 0.5],
size=[0.5, 0.5, 0.5],
inverted=False,
visible=True))
# Moving the walker to two targets is not possible since the walker is a
# shared object in use.
test_predicates = [predicates.MoveWalkerToTarget(walker, targets[0]),
predicates.MoveWalkerToTarget(walker, targets[1])]
task = predicate_task.PredicateTask(
walker=walker,
maze_arena=maze_arena,
predicates=test_predicates,
targets=targets[1:],
randomize_num_predicates=False,
max_num_predicates=2,
reward_scale=1.0,
terminating_reward_bonus=2.0,
)
random_state = np.random.RandomState(12345)
env = composer.Environment(task, random_state=random_state)
with self.assertRaisesWithLiteralMatch(
ValueError, "Could not find set of active predicates"
" with unique objects are after 1000 iterations."):
env.reset()
# However moving to one of the two targets is fine.
walker = walkers.Ant()
num_targets = 2
text_maze = arenas.padded_room.PaddedRoom(
room_size=8, num_objects=6, pad_with_walls=True)
maze_arena = arenas.MazeWithTargets(maze=text_maze)
targets = []
for _ in range(num_targets):
targets.append(
props.PositionDetector(
pos=[0, 0, 0.5],
size=[0.5, 0.5, 0.5],
inverted=False,
visible=True))
test_predicates = [predicates.MoveWalkerToTarget(walker, targets[0]),
predicates.MoveWalkerToTarget(walker, targets[1])]
task = predicate_task.PredicateTask(
walker=walker,
maze_arena=maze_arena,
predicates=test_predicates,
targets=targets[1:],
randomize_num_predicates=False,
max_num_predicates=1,
reward_scale=1.0,
terminating_reward_bonus=2.0,
)
random_state = np.random.RandomState(12345)
env = composer.Environment(task, random_state=random_state)
env.reset()
if __name__ == "__main__":
absltest.main()