forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
149 lines (125 loc) · 4.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import argparse
import pgl
import paddle
import paddle.nn as nn
from pgl.utils.logger import log
import numpy as np
import yaml
from easydict import EasyDict as edict
import tqdm
from paddle.optimizer import Adam
from pgl.utils.data import Dataloader
from paddle.io import get_worker_info
from model import SkipGramModel
from dataset import ShardedDataset
from dataset import BatchRandWalk
def load(name):
if name == 'cora':
dataset = pgl.dataset.CoraDataset()
elif name == "pubmed":
dataset = pgl.dataset.CitationDataset("pubmed", symmetry_edges=True)
elif name == "citeseer":
dataset = pgl.dataset.CitationDataset("citeseer", symmetry_edges=True)
elif name == "BlogCatalog":
dataset = pgl.dataset.BlogCatalogDataset()
else:
raise ValueError(name + " dataset doesn't exists")
indegree = dataset.graph.indegree()
outdegree = dataset.graph.outdegree()
return dataset.graph.to_mmap()
def load_from_file(path):
edges = []
with open(path) as inf:
for line in inf:
u, t = line.strip("\n").split("\t")
u, t = int(u), int(t)
edges.append((u, t))
edges = np.array(edges)
graph = pgl.Graph(edges)
return graph
def train(model, data_loader, optim, log_per_step=10):
model.train()
total_loss = 0.
total_sample = 0
for batch, (src, dsts) in enumerate(data_loader):
num_samples = len(src)
src = paddle.to_tensor(src)
dsts = paddle.to_tensor(dsts)
loss = model(src, dsts)
loss.backward()
optim.step()
optim.clear_grad()
total_loss += loss.numpy()[0] * num_samples
total_sample += num_samples
if batch % log_per_step == 0:
log.info("Batch %s %s-Loss %.6f" %
(batch, "train", loss.numpy()[0]))
return total_loss / total_sample
def main(args):
if not args.use_cuda:
paddle.set_device("cpu")
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
if args.edge_file:
graph = load_from_file(args.edge_file)
else:
graph = load(args.dataset)
model = SkipGramModel(
graph.num_nodes,
args.embed_size,
args.neg_num,
sparse=not args.use_cuda,
shared_embedding=args.shared_embedding)
model = paddle.DataParallel(model)
train_ds = ShardedDataset(graph.nodes, repeat=args.epoch)
train_steps = int(len(train_ds) // args.batch_size)
log.info("train_steps: %s" % train_steps)
scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=train_steps,
end_lr=0.0001)
optim = Adam(learning_rate=scheduler, parameters=model.parameters())
collate_fn = BatchRandWalk(graph, args.walk_len, args.win_size,
args.neg_num, args.neg_sample_type)
data_loader = Dataloader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.sample_workers,
collate_fn=collate_fn)
train_loss = train(model, data_loader, optim)
paddle.save(model.state_dict(), "model.pdparams")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Deepwalk')
parser.add_argument(
"--dataset",
type=str,
default="BlogCatalog",
help="dataset (cora, pubmed, BlogCatalog)")
parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
parser.add_argument(
"--conf",
type=str,
default="./config.yaml",
help="config file for models")
parser.add_argument("--epoch", type=int, default=400, help="Epoch")
parser.add_argument("--edge_file", type=str, default=None)
args = parser.parse_args()
# merge user args and config file
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
config.update(vars(args))
main(config)