-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
54 lines (41 loc) · 1.6 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
"""
Created on Apr 20 22:50:11 2020
@author: Harshvardhan
"""
import numpy as np
import numpy.linalg as linalg
class optimizer:
def __init__(self, D, Wx, Wf, gamma = 1.0 , x_input , protected_index):
"""
Initializes the model.
:param D: Hyperparameter representing the number of final dimensions.
:param Wx: The adjacency matrix of k-nearest neighbour graph over input space X
:param Wf: The adjacency matrix of the pairwise fairness graph G associated to the problem.
:param gamma: Hyperparam controlling the influence of Wf.
:param protected_index : s according to the paper
"""
self.D = D
self.Wf = Wf
self.Wx = Wx
self.gamma = gamma
self.pidx = protected_index
def formlaplacian(self,mat):
csum = np.sum(mat,axis=0,dtype=float)
d = np.diag(csum)
return d-mat
def create_z(self):
Lx=formlaplacian(self.Wx)
Lf=formlaplacian(self.Wf)
gamma = self.gamma
L=gamma*Lf+(1-gamma)*Lx
xt=np.transpose(self.x)
mat=np.dot(xt,np.dot(L,x))
eigenValues, eigenVectors = linalg.eig(mat)
eigenValues = np.real(eigenValues)
top_eigen_indices = np.argpartition(eigenValues, self.D)[:self.D]
V=eigenVectors[0:,top_eigen_indices]
z=np.dot(V.transpose(),xt)
z = np.transpose(z)
z = np.append(z,np.resize(x[:][self.pidx],(x.shape[0],1)),axis=1)
return z