-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhw9.tex
217 lines (163 loc) · 12.8 KB
/
hw9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
\documentclass[a4paper,10pt]{report}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage[top=1in,left=1in,right=1in]{geometry}
\usepackage{mathrsfs}
\usepackage{bm}
\usepackage{bbm}
\usepackage{tikz-cd}
\usepackage{stackengine}
\usepackage{Math_Symbols}
\usepackage{ifpdf}
\ifpdf
%\usepackage[pdftex]{graphicx}
%\else
%\usepackage[dvips]{graphicx}
%\fi
\setenumerate{listparindent=\parindent,topsep=\parskip}
% \setlist[enumerate]{topsep=\parskip}
\setlist[enumerate,2]{label=(\arabic*)}
\setlist[enumerate,3]{label=(\alph*)}
% \newcommand{\set}[1]{{\{#1\}}}
\newcommand{\ggen}[1]{\langle#1\rangle}
\newcommand{\pn}[2]{||#1||_{#2}}
\newcommand{\bpn}[2]{\left|\left|#1\right|\right|_{#2}}
\newcommand{\norm}[1]{||#1||}
\newcommand{\bnorm}[1]{\left|\left|#1\right|\right|}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
\DeclarePairedDelimiter{\set}{\{}{\}}
\DeclarePairedDelimiter{\abs}{|}{|}
\DeclarePairedDelimiter{\ket}{|}{\rangle}
\DeclarePairedDelimiter{\bra}{\langle}{|}
\newcommand{\ol}[1]{\overline{#1}}
\renewcommand{\mod}{\text{ mod }}
\renewcommand{\O}{\operatorname{O}} % Bound otherwise
\renewcommand{\o}{\operatorname{o}}
\newcommand{\T}{\text{yes}}
\newcommand{\F}{\text{no}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\textns}{\otimes}
\newcommand{\rar}[2][]{\overset{#2}{\underset{#1}{\longrightarrow}}}
\DeclareMathOperator{\img}{img}
\DeclareMathOperator{\fop}{int}
\DeclareMathOperator{\fcl}{cl}
% \DeclareMathOperator{\lg}{lg}
\DeclareMathOperator{\vspan}{span}
\DeclareMathOperator{\rng}{rng}
\DeclareMathOperator{\Rng}{Rng}
\DeclareMathOperator{\Cov}{Cov}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\Bernoulli}{Bernoulli}
\DeclareMathOperator{\Normal}{Normal}
\DeclareMathOperator{\Uniform}{Uniform}
\DeclareMathOperator{\Binom}{Binomial}
\DeclareMathOperator{\mgf}{mgf}
\DeclareMathOperator{\Supp}{Supp}
\newcommand{\cat}[1]{(\bm{#1})}
\providecommand{\Alpha}{A}
\newtheorem*{lemma*}{Lemma}
% Roman numerals
\makeatletter
\newcommand{\Romnum}[1]{\expandafter\@slowromancap\romannumeral #1@}
\makeatother
\newcommand{\factor}[1]{\text{\Romnum{#1}}}
\begin{document}
% \maketitle
\pagestyle{fancy}
\fancyhf{} % Reset headers and footers
\lhead{Ethan Ackelsberg, Zachery Dell, Peter Huston\\
Functional Analysis 2\\
\today}
\setlength{\headheight}{60pt}
\begin{center}
\textbf{Homework 9}
\end{center}
\begin{enumerate}
\setcounter{enumi}{92}
\item
\begin{enumerate}
\item Since convolution is $\C$-linear and associative, $\ell\Gamma$ is a $\C$-module, closed under convolution. We know that $\delta_e\in\ell^2\Gamma$ is a unit for the convolution, with $\delta_e\ast f$ defined for every $f:\Gamma\to\C$. Therefore, $\delta_e\in\ell\Gamma$, making $\ell\Gamma$ a unital algebra. We will use part (2) to prove that $\ell\Gamma$ is $*$-closed. (Contrary to the hint, we will not use $*$-closure of $\ell\Gamma$ in proving (2)).
Let $x\in\ell\Gamma$. First, notice that the definition of $x^*$ by $(x^*)_g=\ol{x_{g^{-1}}}$ is the only possible definition so that $(T_x)^*=T_{x^*}$, because if $T_x$ has an adjoint at all, we must have $\ggen{T_x\delta_e,\delta_e}=\ggen{\delta_e,T_x^*\delta_e}$. Moreover, for every $x,\eta\in\ell^2\Gamma$, by {H\"{o}lder's} inequality, $x\ast\eta\in\ell^\infty\Gamma$ is well-defined. The only issue is checking that $\pn{x\ast\eta}{2}<\infty$. Suppose $\xi\in(\ell^2\Gamma)_1$. % with $\pn{x^*\ast\xi}{2}>\pn{x}^2$. % Weird thought, but leaving as hint because I doubt the whole argument.
It would be circular to assert that $\ggen{x\ast x^*\ast\xi,\xi}=\pn{x^*\ast\xi}{2}^2$, but we can approximate. For $F\subseteq\Gamma$ finite, define $\eta_F=\sum_{g\in F}(x^*\ast\xi)_g\delta_g$. Then we have $\ggen{\eta_F,x^*\ast\xi}=\pn{\eta_F}{2}^2\uparrow\pn{x^*\ast\xi}{2}^2$. Since each $\eta_F$ is in $\ell^1\Gamma$, we can apply Fubini's theorem, obtaining
\begin{align*}
\ggen{\eta_F,x^*\ast\xi} &= \ggen{x\ast\eta_F,\xi}\\
&\le \norm{T_x}\cdot\norm{\eta_F}{2}\norm{\xi}{2}\\
&\le \norm{T_x}\cdot\pn{\xi}{2}^2\\
\intertext{Taking limits, }
\pn{x^*\ast\xi}{2}^2 &\le \norm{T_x}\cdot\pn{\xi}{2}^2
\end{align*}
so $\norm{x^*}\le\norm{x}$ as usual. In particular, $\pn{x^*\ast\xi}{2}<\infty$, showing that $x^*\in\ell\Gamma$.
\item Suppose $x\in\ell\Gamma$. To show that $x\in B(\ell^2\Gamma)$, we apply the closed graph theorem. It suffices to check that if $\eta_n\to\eta$ in $\ell^2\Gamma$ and $x\ast\eta_n\to\xi$ in $\ell^2\Gamma$, then $x\ast\eta=\xi$. The following calculation is basic, but in the interest of full disclosure, I read it in Jesse's notes while looking for something else. If $g\in\Gamma$, then by continuity of the inner product,
\begin{align*}
|(\xi-x\ast\eta)_g| &= \lim_{n\to\infty}|(x\ast\eta_n-x\ast\eta)_g|\\
&\le \lim_{n\to\infty}\pn{(x\ast(\eta_n-\eta))_g}{\infty}\\
&\le \lim_{n\to\infty}\pn{x}{2}\pn{\eta_n-\eta}{2}\\
&= 0
\end{align*}
Therefore, $\xi$ and $x\ast\eta$ agree pointwise, and hence $\xi=x\ast\eta$, as desired.
\item Since $L\Gamma=R\Gamma'=\set{\rho_g:g\in\Gamma}'''=\set{\rho_g:g\in\Gamma}'$ as a subalgebra of $B(\ell^2\Gamma)$, it suffices to check that for every $x\in\ell\Gamma$ and $g\in\Gamma$, we have $x\rho_g=\rho_gx$. Let $x\in\ell\Gamma$ and $g\in\Gamma$ be given. Since $x$ and $\rho_g$ are norm-continuous, it suffices to check that for every $h\in\Gamma$, $x\ast\rho_g(\delta_h)=\rho_g(x\ast\delta_h)$. Let $h\in\Gamma$ be given. Then we can compute that
\begin{align*}
x\ast\rho_g(\delta_h) &= x\ast\delta_{hg^{-1}}\\
\intertext{ and for every $k\in\Gamma$, }
(x\ast\rho_g(\delta_h))_k &= (x\ast\delta_{hg^{-1}})_k\\
&= x_{kgh^{-1}}\\
&= (x\ast\delta_h)_{kg}\\
&= \rho_g(x\ast\delta_h)_k
\intertext{ showing that }
x\ast\rho_g(\delta_h) &= \rho_g(x\ast\delta_h)\\
\intertext{ showing that }
T_x\rho_g &= \rho_gT_x
\end{align*}
as desired.
\item It is clear that $x\to T_x$ is a unital homomorphism. We saw when solving part (1) that $(T_x)^*=T_{x^*}$. Because $\ggen{T_x\delta_e,\delta_g}=x_g$, an inverse homomorphism is given by $T\to(\ggen{T\delta_e,\delta_g})_{g\in\Gamma}$; that the range of this homorphism is contained in $\ell\Gamma$ was proven in class.
\end{enumerate}
\setcounter{enumi}{94}
\item Let $M$ and $N$ be von Neumann algebras, and $\Ed : M \to N$ a *-isomorphism.\\
First, $\Ed$ sends positive operators to positive operators, since $\Ed \E x^* x \R = \Ed \E x \R^* \Ed \E x \R$.\\
Let $\E x_\lambda \R$ be an increasing net of positive operators in $M$, with least upper bound $x$.\\
Lastly, if $y \in N$ with $\Ed \E x \R \geq y \geq \Ed \E x_\lambda \R$ for all $\lambda$, then $x \geq \Ed^{-1} \E y \R \geq x_\lambda$ for all $\lambda$, and thus $y = x$, because $x$ is the least upper bound for $\E x_\lambda \R$.\\
Thus $\Ed \E x_\lambda \R \toup \Ed \E x \R$, so $\Ed$ is normal.\\
\item
\begin{enumerate}
\item A well-known result in group theory says that any subgroup of a free group is free. Therefore, it suffices to prove that the conjugacy classes of the members of a generating set for $\mathbb{F}_2$ are infinite. We know that in $S_n$, we have $(1,2,\ldots n)^{k}(1,2)(1,2\ldots n)^{-k}=(k+1,k+2)$. Therefore, for every $n\in\N$, there exist groups $G$ with elements $a,b\in G$ such that $a^kba^{-k}$ are distinct for every $k\le n$. If $\mathbb{F}_2=\ggen{x,y}$, then $|\set{x^kyx^{-k}}|$ is either infinity, or a non-zero integer multiple of every natural number. Therefore, $y$ has infinite conjugacy class, as desired.
Since $\mathbb{F}_2$ is an ICC group, by a result proved in class, $L\mathbb{F}_2$ is a $\factor{2}_1$ factor.
\item Let $\Phi:\Gamma\to\Lambda$ be an isomorphism of groups. Then there is an isometric isomorphism $\Phi_*:\ell^2\Lambda\to\ell^2\Gamma$, defined by $\Phi_*(\eta)_g=\eta_{\Phi(g)}$ for $g\in\Gamma$, with $(\Phi^{-1})_*=(\Phi_*)^{-1}$. Pick $x\in\ell\Lambda$. For every $\eta\in\ell^2\Gamma$, we have $\Phi_*(x)\ast\eta=\Phi_*(x\ast\Phi_*^{-1}(\eta))$, so $\Phi_*(x)\in\ell\Gamma$. Therefore, we may consider $\Phi_*(X)$ as an algebra isomorphism $\ell\Lambda\to\ell\Gamma$. Since $\Phi$ preserves the group identity, $\Phi_*(\delta_e)=\delta_e$, showing that $\Phi_*$ is unital, and since $\Phi$ preserves inverses and $\Phi_*$ is linear, $\Phi_*$ is a $*$-homomorphism. By problem 93 part (4), we can turn $\Phi_*$ into a unital $*$-isomorphism $L\Lambda\to L\Gamma$.
In particular, $\sigma$ is an automorphism of $\mathbb{F}_2$, so $\sigma$ defines an automorphism $\alpha$ of $L\mathbb{F}_2$.
\item We will show that $\alpha$ is free, which implies that $\alpha$ is outer. Happily for us, $\sigma=\sigma^{-1}$. Therefore, we can simply write, for $x\in\ell\mathbb{F}_2$, that $\alpha(x)_g=x_{\sigma(g)}$. Now for every $g,h\in\mathbb{F}_2$ and $x\in\ell\mathbb{F}_2$, we have $(x\ast\delta_g)_h=x_{h^{-1}g}$ and $(\delta_g\ast x)_h=x_{g^{-1}h}$. Suppose $x\in\ell\mathbb{F}_2$ such that for every $g\in\mathbb{F}_2$, we have $x\ast\alpha(\delta_{g^{-1}})=\delta_{g^{-1}}\ast x$; then for every $g,h\in\mathbb{F}_2$, we get $x_{h\sigma(g)}=x_{gh}$. In particular, if $\mathbb{F}_2\cong\ggen{a,b}$ is a presentation, then for every $w\in\mathbb{F}_2$, we have $x_w=x_{a(a^{-1}w)}=x_{a^{-1}wb}$. Of course, counting up $a$'s and $b$'s via the homormohpism $\ggen{a,b}\to\ggen{a,b|[a,b]}\cong\Z^2$ shows that for any $w$, the set $\set{a^{-n}wb^n:n\in\Z}$ is infinite. This shows that $x$ is constant on some infinite subsets which cover $\mathbb{F}_2$. Since $x\in\ell^2\mathbb{F}_2$, this means that $x=0$. By definition, we have shown that $\alpha$ is free.
\end{enumerate}
\item Let $\ma Z$ act on $L^\infty \E S^1 \R$ via irrational rotation, i.e., let $T : \ma T \to \ma T$ be given by $T \E x \R = x + \A$ for some $\A \in \ma R \back \ma Q$, and define the action by $n \mapsto \blank \circ T^n$.\\
First we show that the action is ergodic. Let $S \subs \ma T$ be measurable and invariant under $T$.\\
Fix $\ep > 0$. Since $C \E \ma T \R$ is dense in $L^1 \E \ma T \R$, we can find $f \in C \E \ma T \R$ such that
\begin{align*}
\NK f - \mb 1_S \KN_1 < \fa{\ep}{2}.
\end{align*}
Then since $S$ is $T$ invariant, we also have that for each $n \in \ma Z$,
\begin{align*}
\NK f \circ T^n - \mb 1_S \KN_1 < \fa{\ep}{2}.
\end{align*}
Thus for each $n \in \ma Z$, $\NK f \circ T^n - f \KN_1 < \ep$.\\
But since $x + n \A$ is dense in $\ma T$, it follows that for each $t \in \ma T$, $\NK f \E x + t \R - f \E x \R \KN_1 < \ep$, bceause $f$ is continuous.\\
We claim that $f$ is constant: ($\tau_x$ is translation by $x$):
\begin{align*}
\NK f - \I f \circ \tau_x \E t \R dt \KN_1%
&= \I \MG f - \I f \circ \E x + t \R dt \GM dx\\
&\leq \MG \I \I f \E x \R - f \E x + t \R dt dx \GM\\
&= \MG \I \I f \E x \R - f \E x + t \R dx dt \GM , \quad \te{ by Fubini}\\
&= \I \NK f - f \circ \tau_x \KN_1 dt\\
&= \NK f - f \circ \tau_x \KN_1\\
&\leq \ep.
\end{align*}
Thus $f$ is equal a.e. to it's average value, and thus is constant. It follows that $\mu \E S \R = 0$ or $\mu \E S \R = 1$, so the action is ergodic.\\
Now we show that the action is free.\\
Since non-zero integer multiples of an irrational number are irrational, it suffices to prove that the action of $T$ is free. Fix $f\in L^\infty(S^1,\lambda)$, where $\lambda$ denotes the Haar probability measure on $S^1$. Suppose that for every $g\in L^\infty(S^1,\lambda)$, we have $f\cdot T(g)=g\cdot f$ almost everywhere. Suppose $f\neq 0$. Then $f$ cannot be constant almost everywhere, since if $g$ is the characteristic function of an open interval not of full measure, then $T(g)-g$ is non-zero on a set of positive measure. Since $\lambda$ is finite and $f$ is not constant (and in particular, not zero) almost everwhere, there is $z\in\C\setminus\set{0}$ and $\epsilon\in[0,|z|)$ such that $\lambda(\set{|f-z|\le\epsilon})\in(0,1)$. Therefore, it suffices to consider the case where $f$ is the characteristic function $1_A$ for some $A$ with $\lambda(A)\in(0,1)$. But the action of $T$ is ergodic, so $T(1_A)-1_A$ is not zero almost everywhere. Therefore, setting $g=1_A$, we obtain a contradiction. This shows that $f=0$ in $L^\infty(S^1,\lambda)$, and since $f$ was arbitrary, the action of $T$ is free.
\end{enumerate}
\end{document}