-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhw10.tex
208 lines (188 loc) · 12.7 KB
/
hw10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
\documentclass[a4paper,10pt]{report}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage[top=1in,left=1in,right=1in]{geometry}
\usepackage{mathrsfs}
\usepackage{bm}
\usepackage{bbm}
\usepackage{tikz-cd}
\usepackage{stackengine}
\usepackage{Math_Symbols}
\usepackage{ifpdf}
\ifpdf
%\usepackage[pdftex]{graphicx}
%\else
%\usepackage[dvips]{graphicx}
%\fi
\setenumerate{listparindent=\parindent,topsep=\parskip}
% \setlist[enumerate]{topsep=\parskip}
\setlist[enumerate,2]{label=(\arabic*)}
\setlist[enumerate,3]{label=(\alph*)}
% \newcommand{\set}[1]{{\{#1\}}}
\newcommand{\ggen}[1]{\langle#1\rangle}
\newcommand{\pn}[2]{||#1||_{#2}}
\newcommand{\bpn}[2]{\left|\left|#1\right|\right|_{#2}}
\newcommand{\norm}[1]{||#1||}
\newcommand{\bnorm}[1]{\left|\left|#1\right|\right|}
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
\DeclarePairedDelimiter{\set}{\{}{\}}
\DeclarePairedDelimiter{\abs}{|}{|}
\DeclarePairedDelimiter{\ket}{|}{\rangle}
\DeclarePairedDelimiter{\bra}{\langle}{|}
\newcommand{\ol}[1]{\overline{#1}}
\renewcommand{\mod}{\text{ mod }}
\renewcommand{\O}{\operatorname{O}} % Bound otherwise
\renewcommand{\o}{\operatorname{o}}
\newcommand{\T}{\text{yes}}
\newcommand{\F}{\text{no}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\textns}{\otimes}
\newcommand{\rar}[2][]{\overset{#2}{\underset{#1}{\longrightarrow}}}
\DeclareMathOperator{\img}{img}
\DeclareMathOperator{\fop}{int}
\DeclareMathOperator{\fcl}{cl}
% \DeclareMathOperator{\lg}{lg}
\DeclareMathOperator{\vspan}{span}
\DeclareMathOperator{\rng}{rng}
\DeclareMathOperator{\Rng}{Rng}
\DeclareMathOperator{\Cov}{Cov}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\Bernoulli}{Bernoulli}
\DeclareMathOperator{\Normal}{Normal}
\DeclareMathOperator{\Uniform}{Uniform}
\DeclareMathOperator{\Binom}{Binomial}
\DeclareMathOperator{\mgf}{mgf}
\DeclareMathOperator{\Supp}{Supp}
\newcommand{\cat}[1]{(\bm{#1})}
\providecommand{\Alpha}{A}
\newtheorem*{lemma*}{Lemma}
% Roman numerals
\makeatletter
\newcommand{\Romnum}[1]{\expandafter\@slowromancap\romannumeral #1@}
\makeatother
\newcommand{\factor}[1]{\text{\Romnum{#1}}}
\begin{document}
% \maketitle
\pagestyle{fancy}
\fancyhf{} % Reset headers and footers
\lhead{Zachery Dell, Peter Huston, Samuel Mossing\\
Functional Analysis 2\\
\today}
\setlength{\headheight}{60pt}
\begin{center}
\textbf{Homework 10}
\end{center}
\begin{enumerate}
\setcounter{enumi}{99}
\item
\begin{enumerate}
\item First, notice that the inclusion $\iota:N\to M$ is an isometry with respect to the trace-norm: If $a,b\in N$, then
\begin{align*}
\ggen{a,b}_N &= \tr(b^*a)\\
&= \tr(\iota(b)^*\iota(a))\\
&= \ggen{a,b}_M
\end{align*}
Therefore, $\iota$ extends to an isometry $N\to L^2(M,\tr)$. Since $\iota$ is an isometry, $\iota$ extends continuously to the trace-norm closure of $N$, which is $L^2(N,\tr)$. Being an isometry, $\iota:L^2(N,\tr)\to L^2(M,\tr)$ must still be an inclusion.
\item Being an orthogonal projection, $e_N$ is norm-decreasing, and therefore continuous, with a continuous adjoint $e_N^*$. As for any projection onto a closed Hilbert subspace, we have $e_N^*=\iota$, and so $e_N^*e_N$ is the orthogonal projection onto $\iota(L^2(N,\tr))$, while $e_Ne_N^*=1_{L^2(N,\tr)}$.
Suppose $a,b\in N$, and let $\Omega_N$ be the image of $1_N$ in $L^2(N,\tr)$. Then we have
\begin{align*}
JaJe_N^*b\Omega_N &= JaJb\Omega_N\\
&= ba^*\Omega_N\\
&= e_N^*ba^*\Omega_N\\
&= e_N^*JaJb\Omega_N
\end{align*}
Since multiplication by a member of $n$ is continuous in one component (by Cauchy-Schwarz for the trace) and $e_N^*$ is norm-continuous, we can replace $b\Omega_N$ with any member of $L^2(N,\tr)$, so $e_N^*$ commutes with the right-action of $N$.
% The same holds for the right-action of members of $M$, and so by taking % unneeded!
Taking
adjoints, $e_N$ also commutes with the right action: for $a\in N$, $\eta\in L^2(M,\tr)$, and $\xi\in L^2(N,\tr)$,
\begin{align*}
\ggen{JaJe_N\eta,\xi} &= \ggen{\eta,e_N^*Ja^*J\xi}\\
&= \ggen{\eta,Ja^*Je_N^*\xi}\\
&= \ggen{e_NJaJ\eta,\xi}
\end{align*}
Clearly, the left action of a member of $M$ and the right action of a member of $N$ on $L^2(M,\tr)$ commute. Combining these three facts, for every $x\in M$, $e_Nxe_N^*$ commutes with the right action of $N$ on $L^2(N,\tr)$. By problem 91 part 8, we have $e_Nxe_N^*\in(JNJ)'=N$, where commutant is relative to $B(L^2(N,\tr))$.
\item Pick $x\in M$.
% Write $x^*=z+w$ where $z\in L^2(N,\tr)$ and $w\in L^2(N,\tr)^\perp\subseteq L^2(M,\tr)$.
% Then $e_Nx^*=e_Nz=z$.
Then, for any $y\in N$, we have
\begin{align*}
\tr(E(x)y)_N &= \ggen{e_Nx^*e_N^*\Omega_N,y\Omega_N}_N\\
&= \ggen{x^*e_N^*\Omega_N,e_N^*y\Omega_N}_M\\
&= \ggen{x^*\Omega_M,y\Omega_M}_M\\
&= \tr(xy)_M
\end{align*}
A Hilbert space is in weak duality with itself, so for any Hilbert space $H$, an element $\eta\in H$ is uniquely determined by a choice of $(\ggen{\eta,\xi})_{\xi\in H}$, provided such an $\eta$ exists. In particular, this holds for $\eta=E(x)$.
\end{enumerate}
\item
\begin{enumerate}
\item First, notice that $E$ preserves positivity: Suppose $x\in M$ is positive. Then for any $\eta\in L^2(N,\tr)$, we have
\[\ggen{E(x)\eta,\eta}=\ggen{xe_N^*\eta,e_N^*\eta}\ge0\]
Expanding on the last argument, the sesquilinear form induced by $E(x)$ is a restriction of the sesquilinear form induced by $x$: for $\eta,\xi\in L^2(N,\tr)$, we have
\begin{align*}
\ggen{E(x)\eta,\xi}_N &= \ggen{xe_N^*\eta,e_N^*\xi}_M\\
&= \ggen{x\eta,\xi}_M\\
\end{align*}
Therefore, if $x_\lambda\nearrow x$, then $E(x_\lambda)$ is still an increasing sequence of positive operators bounded by $E(x)$, and $E(x_\lambda)\nearrow E(x)$ weakly, and hence $\sigma$-WOT. By definition, $E$ is normal.
\item By the previous remark about sesquilinear forms, $E(1_M)=1_N$. Let $y,z,w\in N$ and $x\in M$ be given; then by part (3) of 100,
\begin{align*}
\tr((yE(x)z)w)_N &= \tr(E(x)zwy)_N\\
&= \tr(xzwy)_M\\
&= \tr(yxzw)_M\\
&= \tr(E(yxz)w)_N
\end{align*}
and by uniqueness, $E(yxz)=\tr(yE(x)z)$.
\item This follows from the remark about sesquilinear forms.
\item Let a matrix $a=((a_{i,j})_{i=1}^n)_{j=1}^n\in M_n(M)$ be given. As an unjustified notation, let $E(a)=(E(a_{i,j})_{i=1}^n)_{j=1}^n$. Choose a vector $\eta=(\eta_k)_{k=1}^n$ in $L^2(N,\tr)^n$. Then we have
\begin{align*}
\ggen{a\eta,\eta} &= \sum_{i=1}^n\sum_{j=1}^n\ggen{a_{i,j}\eta_j,\eta_i}\\
&= \sum_{i=1}^n\sum_{j=1}^n\ggen{E(a_{i,j})\eta_j,\eta_i}\\
&= \ggen{E(a)\eta,\eta}
\end{align*}
Therefore, if $a$ is positive, then $E(a)$ is also positive, as desired.
\item Let $x\in M$. Then for every $\eta\in L^2(N)$, we have
\begin{align*}
\ggen{E(x)^*E(x)\eta,\eta}_N &= \ggen{E(x)\eta,E(x)\eta}_N\\
&= \ggen{e_N^*e_N(xe_N^*\eta),xe_N^*\eta}\\
\intertext{As explained in solving the previous problem, $e_N^*e_N$ is an orthogonal projection, so we have }
\ggen{E(x)^*E(x)\eta,\eta}_N &\le \ggen{xe_N^*\eta,xe_N^*\eta}\\
&= \ggen{E(x^*x)\eta,\eta}
\end{align*}
Since $\eta$ was chosen arbitrarily, $E(x)^*E(x)\le E(x^*x)$.
\item The key here is that the inclusion $N\subseteq M$ is unital. If $E(x^*x)=0$, then in particular $\ggen{E(x^*x)\Omega_N,\Omega_N}=\ggen{x^*x\Omega_M,\Omega_M}=\norm{x}^2=0$, so $x=0$.
\end{enumerate}
\item
Notation: Let $H$ be a Hilbert space on which $M$ acts as a von Neumann algebra. It seems to us that we can prove a little more: rather than just considering $M$ with the GNS-representation, we can consider any representation of $M$ which induces an equivalent operator norm on $H$. We proceed in this generality. The case $H=L^2(M,\tr)$ is often easier.
\begin{enumerate}
\item Assume first that $(x_\lambda)$ is a bounded net in $M$ with $x_\lambda \rightarrow x$ SOT. Then, for all $\xi\in H$, we have $x_\lambda \xi \rightarrow x\xi$. Also note that since $$\|(x_\lambda - x)^* (x_\lambda - x)\xi \| \leq \|(x_\lambda - x)^*\| \|(x_\lambda - x)\xi \|$$ with $x_\lambda - x$ uniformly bounded in operator norm, this implies that $(x_\lambda - x)^*(x_\lambda - x) \rightarrow 0$ SOT. Since $\tr$ is normal, this implies that $\tr((x_\lambda - x)^*(x_\lambda - x)) \rightarrow 0$. This is exactly the inner product on $L^2(M)$, and so we have $$\|x_\lambda\Omega - x\Omega \|^2 = \langle (x_\lambda - x)\Omega, (x_\lambda - x)\Omega \rangle = \tr((x_\lambda - x)^*(x_\lambda - x)) \rightarrow 0.$$ Thus, we have shown that $x_\lambda \rightarrow x$ SOT in $M$ with $x_\lambda$ bounded implies that $\|x_\lambda\Omega - x\Omega \| \rightarrow 0$.
\newline
\newline
%\textbf{I believe the below argument is correct, but it is a little bit more precise than what I discussed with Peter.}
Conversely, assume that $\|x_\lambda\Omega - x\Omega \|\rightarrow 0$ (with $(x_\lambda)$ still a bounded net in $M$).
By definition, we have $\tr((x_\lambda - x)^*(x_\lambda - x)) \rightarrow 0$ with $(x_\lambda - x)^*(x_\lambda - x) \geq 0$ for all $\lambda$.
Since the $x_\lambda$ are uniformly bounded, we have that $(x_\lambda - x)^*(x_\lambda - x)$ is a bounded net of positive operators in $M$.
Because the unit ball of $M$ is $\sigma$-WOT compact, we know that there exists a subnet of the $(x_\lambda - x)^*(x_\lambda - x)$ which converges $\sigma$-WOT, say to $y$. Since $\tr$ is normal and $\tr((x_\lambda - x)^*(x_\lambda - x)) \rightarrow 0$, this implies that $\tr(y) = 0$.
Since we are working on a bounded set, $y$ is the WOT limit of positive operators, and therefore positive.
Since $\tr(y)=0$, $y \geq 0$, and $\tr$ is faithful, we must have $y=0$.
We may apply the same argument to any subnet of the $x_\lambda$, so we have shown that $(x_\lambda - x)^*(x_\lambda - x)$ is a bounded, positive net in $M$, such that every subnet has a further subnet which converges to $0$ $\sigma$-WOT; by general topology, this implies that $(x_\lambda-x)^*(x_\lambda-x)\to 0$ $\sigma$-WOT, and by boundedness, WOT.
Thus, for all $\xi\in H$, we have $$\langle (x_\lambda - x)\xi, (x_\lambda - x)\xi \rangle = \langle (x_\lambda - x)^*(x_\lambda - x)\xi,\xi \rangle \rightarrow 0$$ and so $x_\lambda - x \rightarrow 0$ SOT, as desired.
\newline
\newline Putting these together, we have shown that for bounded nets $x_\lambda$ in $M$, $x_\lambda \rightarrow x$ SOT if and only if $\|x_\lambda \Omega - x\Omega\| \rightarrow 0$.
\item Fix $x\in M$. Fix $\epsilon > 0$. By assumption, we have $(\bigcup{M_n})'' = M$, and note that an increasing union of unital $*$-subalgebras is still a unital $*$-subalgebra.
By the bicommutant theorem, we know that $(\bigcup{M_n})''$ is the SOT closure of $\bigcup{M_n}$. Therefore, $\bigcup{M_n}$ is a $*$-subalgebra which is SOT dense in the von Neumann algebra $M$. By the Kaplansky density theorem, there exists a bounded net $(x_\lambda)$ in $\bigcup{M_n}$ such that $x_\lambda \rightarrow x$ SOT. By part (1), this implies that $\|x_\lambda \Omega - x\Omega\| \rightarrow 0$, so there exists some $\lambda$ such that $\|x_\lambda \Omega - x\Omega\| < \epsilon$. We know that $x_\lambda \in M_n$ for some $n$, and so $x_\lambda \Omega \in L^2(M_n) \subseteq L^2(M)$ (in the sense of problems 100 and 101). By problems 100 and 101, we know that $E_n(x)\Omega = e_n (x\Omega)$, where $e_n$ is the projection in $B(L^2(M))$ onto the closed subspace $L^2(M_n)\subseteq L^2(M)$. By definition of projections, we know that $$\|E_n(x)\Omega - x\Omega \| = \inf_{y\in L^2(M_n)}{\|y - x\Omega\|} \leq \|x_\lambda \Omega - x\Omega\| < \epsilon.$$ So, we have that $\|E_n(x)\Omega - x\Omega \| < \epsilon$. Observe that for all $m\geq n$, $E_m(x)\Omega = e_m(x\Omega)$ is the projection onto the subspace $L^2(M_m)$ with $L^2(M_n)\subseteq L^2(M_m)\subseteq L^2(M)$. So, for all $m\geq n$, we have $e_m\geq e_n$ as projections, and thus $\|E_m(x)\Omega - x\Omega \| \leq \|E_n(x)\Omega - x\Omega \|$ whenever $m\geq n$. Therefore, we have shown that $\|E_m(x)\Omega - x\Omega \| < \epsilon$ for all $m\geq n$. Since $\epsilon > 0$ was arbitrary, we conclude that $\|E_n(x)\Omega - x\Omega\| \rightarrow 0$ as $n\rightarrow \infty$.
\item By part (2), $\|E_n(x)\Omega - x\Omega\| \rightarrow 0$. Also, observe that $E_n(x)$ is a bounded sequence in $M$,
% (taking $H = B(L^2(M))$ here).
since each $E_n$ is $\pn{\cdot}{2}$-decreasing.
% \textbf{Is this actually true in general $H$? It is true if we take $M\subset B(L^2(M))$?}
Therefore, by part (1), this implies that $E_n(x) \rightarrow x$ SOT as $n\rightarrow \infty$.
\end{enumerate}
\end{enumerate}
\end{document}