forked from GoogleCloudPlatform/professional-services
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generator_pipeline.py
159 lines (135 loc) · 6.49 KB
/
data_generator_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2018 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A Dataflow pipeline which reads a schema to simulate or "fake" data
from a json file and writes random data of the schema's shape to a
BigQuery table or as CSV or AVRO files on GCS. This can be used to
ease apprehension about BQ costs, unblock integration testing before
real data can be provided by the business, or create dummy datasets
for stress testing in the event of large data growth.
"""
import json
import logging
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from data_generator.PrettyDataGenerator import DataGenerator, FakeRowGen, \
parse_data_generator_args, validate_data_args, fetch_schema,\
write_n_line_file_to_gcs
import avro.schema
import fastavro
import os
from data_generator.CsvUtil import dict_to_csv
from data_generator.AvroUtil import fix_record_for_avro
from data_generator.ParquetUtil import get_pyarrow_translated_schema, \
fix_record_for_parquet
from data_generator.enforce_primary_keys import EnforcePrimaryKeys
def run(argv=None):
"""
This function parses the command line arguments and runs the Beam Pipeline.
Args:
argv: list containing the commandline arguments for this call of the
script.
"""
# Keeps track if schema was inferred by input or ouput table.
schema_inferred = False
data_args, pipeline_args = parse_data_generator_args(argv)
data_args, schema_inferred = fetch_schema(data_args, schema_inferred)
pipeline_options = PipelineOptions(pipeline_args)
temp_location = pipeline_options.display_data()['temp_location']
temp_blob = write_n_line_file_to_gcs(
pipeline_options.display_data()['project'], temp_location,
data_args.num_records)
data_gen = DataGenerator(bq_schema_filename=data_args.schema_file,
input_bq_table=data_args.input_bq_table,
p_null=data_args.p_null,
n_keys=data_args.n_keys,
min_date=data_args.min_date,
max_date=data_args.max_date,
only_pos=data_args.only_pos,
max_int=data_args.max_int,
max_float=data_args.max_float,
float_precision=data_args.float_precision,
write_disp=data_args.write_disp,
key_skew=data_args.key_skew,
primary_key_cols=data_args.primary_key_cols)
# Initiate the pipeline using the pipeline arguments passed in from the
# command line. This includes information including where Dataflow should
# store temp files, and what the project id is and what runner to use.
p = beam.Pipeline(options=pipeline_options)
rows = (
p
# Read the file we created with num_records newlines.
| 'Read file with num_records lines' >> beam.io.ReadFromText(
os.path.join('gs://', temp_blob.bucket.name, temp_blob.name))
# Use our instance of our custom DataGenerator Class to generate 1 fake
# datum with the appropriate schema for each element in the PColleciton
# created above.
| 'Generate Data' >> beam.ParDo(FakeRowGen(data_gen))
| 'Parse Json Strings' >> beam.FlatMap(lambda row: [json.loads(row)]))
if data_args.primary_key_cols:
for key in data_args.primary_key_cols.split(','):
rows |= 'Enforcing primary key: {}'.format(
key) >> EnforcePrimaryKeys(key)
if data_args.csv_schema_order:
(rows
| 'Order fields for CSV writing.' >> beam.FlatMap(
lambda d: [dict_to_csv(d, data_args.csv_schema_order.split(','))])
| 'Write to GCS' >> beam.io.textio.WriteToText(
file_path_prefix=data_args.output_prefix, file_name_suffix='.csv')
)
if data_args.avro_schema_file:
avsc = avro.schema.parse(open(data_args.avro_schema_file, 'rb').read())
fastavro_avsc = fastavro.schema.load_schema(data_args.avro_schema_file)
(rows
# Need to convert time stamps from strings to timestamp-micros
| 'Fix date and time Types for Avro.' >>
beam.FlatMap(lambda row: fix_record_for_avro(row, avsc))
| 'Write to Avro.' >> beam.io.avroio.WriteToAvro(
file_path_prefix=data_args.output_prefix,
codec='null',
file_name_suffix='.avro',
use_fastavro=True,
schema=fastavro_avsc))
if data_args.write_to_parquet:
with open(data_args.schema_file, 'r') as infile:
str_schema = json.load(infile)
pa_schema = get_pyarrow_translated_schema(str_schema)
(rows
| 'Fix data and time Types for Parquet.' >>
beam.FlatMap(lambda row: fix_record_for_parquet(row, str_schema))
| 'Write to Parquet.' >> beam.io.WriteToParquet(
file_path_prefix=data_args.output_prefix,
codec='null',
file_name_suffix='.parquet',
schema=pa_schema))
if data_args.output_bq_table:
(rows
| 'Write to BigQuery.' >> beam.io.gcp.bigquery.WriteToBigQuery(
# The table name is a required argument for the BigQuery sink.
# In this case we use the value passed in from the command
# line.
data_args.output_bq_table,
schema=None if schema_inferred else data_gen.get_bq_schema(),
# Creates the table in BigQuery if it does not yet exist.
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=data_gen.write_disp,
# Use the max recommended batch size.
batch_size=500))
p.run().wait_until_finish()
# Manually clean up of temp_num_records.txt because it will be outside this
# job's directory and Dataflow will not remove it for us.
temp_blob.delete()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()