forked from fschaeffler93/best_voxelnet_ever
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
102 lines (80 loc) · 4.11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
# -*- coding:UTF-8 -*-
import glob
import argparse
import os
import time
import tensorflow as tf
from config import cfg
from model import RPN3D
from utils import *
from utils.kitti_loader import iterate_data, sample_test_data
parser = argparse.ArgumentParser(description='testing')
parser.add_argument('-n', '--tag', type=str, nargs='?', default='pre_trained_pedestrian',
help='set log tag')
parser.add_argument('-d', '--decrease', type=bool, nargs='?', default=False,
help='set the flag to True if decrease model')
parser.add_argument('-m', '--minimize', type=bool, nargs='?', default=False,
help='set the flag to True if minimize model')
parser.add_argument('-b', '--single-batch-size', type=int, nargs='?', default=1,
help='set batch size for each gpu')
parser.add_argument('-o', '--output-path', type=str, nargs='?', default='predictions',
help='results output dir')
parser.add_argument('-v', '--vis', type=bool, nargs='?', default=False,
help='set the flag to True if dumping visualizations')
args = parser.parse_args()
dataset_dir = cfg.DATA_DIR
test_dir = os.path.join(dataset_dir, 'testing')
res_dir = os.path.join('.', args.output_path)
save_model_dir = os.path.join('.', 'save_model', args.tag)
os.makedirs(res_dir, exist_ok=True)
os.makedirs(os.path.join(res_dir, 'data'), exist_ok=True)
if args.vis:
os.makedirs(os.path.join(res_dir, 'vis'), exist_ok=True)
def main(_):
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(
per_process_gpu_memory_fraction=cfg.GPU_MEMORY_FRACTION,
visible_device_list=cfg.GPU_AVAILABLE,
allow_growth=True
)
config = tf.ConfigProto(
gpu_options=gpu_options,
device_count={"GPU": cfg.GPU_USE_COUNT,},
allow_soft_placement=True,
)
with tf.Session(config=config) as sess:
model = RPN3D(
cls=cfg.DETECT_OBJ,
decrease=args.decrease,
minimize=args.minimize,
single_batch_size=args.single_batch_size,
avail_gpus=cfg.GPU_AVAILABLE.split(',')
)
# param init/restore
if tf.train.get_checkpoint_state(save_model_dir):
print("Reading model parameters from %s" % save_model_dir)
model.saver.restore(sess, tf.train.latest_checkpoint(save_model_dir))
for batch in iterate_data(test_dir, shuffle=False, aug=False, is_testset=True, batch_size=args.single_batch_size * cfg.GPU_USE_COUNT, multi_gpu_sum=cfg.GPU_USE_COUNT):
if args.vis:
tags, results, front_images, bird_views, heatmaps = model.predict_step(sess, batch, summary=False, vis=True)
else:
tags, results = model.predict_step(sess, batch, summary=False, vis=False)
for tag, result in zip(tags, results):
of_path = os.path.join(res_dir, 'data', tag + '.txt')
with open(of_path, 'w+') as f:
labels = box3d_to_label([result[:, 1:8]], [result[:, 0]], [result[:, -1]], coordinate='lidar')[0]
for line in labels:
f.write(line)
print('write out {} objects to {}'.format(len(labels), tag))
# dump visualizations
if args.vis:
for tag, front_image, bird_view, heatmap in zip(tags, front_images, bird_views, heatmaps):
front_img_path = os.path.join(res_dir, 'vis', tag + '_front.jpg')
bird_view_path = os.path.join(res_dir, 'vis', tag + '_bv.jpg')
heatmap_path = os.path.join(res_dir, 'vis', tag + '_heatmap.jpg')
cv2.imwrite(front_img_path, front_image)
cv2.imwrite(bird_view_path, bird_view)
cv2.imwrite(heatmap_path, heatmap)
if __name__ == '__main__':
tf.app.run(main)