forked from ByteArena/box2d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCommonB2Math.go
870 lines (723 loc) · 19.6 KB
/
CommonB2Math.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
package box2d
import (
"math"
)
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// b2Math.h
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// B2IsValid is used to ensure that a floating point number is not a NaN or infinity.
func B2IsValid(x float64) bool {
return !math.IsNaN(x) && !math.IsInf(x, 0)
}
// This is a approximate yet fast inverse square-root.
func B2InvSqrt(x float64) float64 {
// https://groups.google.com/forum/#!topic/golang-nuts/8vaZ1ERYIQ0
// Faster with math.Sqrt
return 1.0 / math.Sqrt(x)
}
// B2Vec2 is a 2D column vector.
type B2Vec2 struct {
X, Y float64
}
// MakeB2Vec2 constructs a B2Vec2 using the provided coordinates.
func MakeB2Vec2(xIn, yIn float64) B2Vec2 {
return B2Vec2{
X: xIn,
Y: yIn,
}
}
// NewB2Vec2 constructs a new B2Vec2 using the provided coordinates.
func NewB2Vec2(xIn, yIn float64) *B2Vec2 {
return &B2Vec2{
X: xIn,
Y: yIn,
}
}
// SetZero sets the vector to all zeros.
func (v *B2Vec2) SetZero() {
v.X = 0.0
v.Y = 0.0
}
// Set sets this vector to some specified coordinates.
func (v *B2Vec2) Set(x, y float64) {
v.X = x
v.Y = y
}
// OperatorNegate negates this vector.
func (v B2Vec2) OperatorNegate() B2Vec2 {
return MakeB2Vec2(
-v.X,
-v.Y,
)
}
// OperatorIndexGet returns an indexed element.
func (v B2Vec2) OperatorIndexGet(i int) float64 {
if i == 0 {
return v.X
}
return v.Y
}
// OperatorIndexSet sets an indexed element.
func (v *B2Vec2) OperatorIndexSet(i int, value float64) {
if i == 0 {
v.X = value
return
}
v.Y = value
}
// OperatorPlusInplace adds a vector to this vector.
func (v *B2Vec2) OperatorPlusInplace(other B2Vec2) {
v.X += other.X
v.Y += other.Y
}
// OperatorMinusInplace subtracts a vector from this vector.
func (v *B2Vec2) OperatorMinusInplace(other B2Vec2) {
v.X -= other.X
v.Y -= other.Y
}
// OperatorScalarMulInplace multiplies this vector by a scalar.
func (v *B2Vec2) OperatorScalarMulInplace(a float64) {
v.X *= a
v.Y *= a
}
// Length returns length of this vector (the norm).
func (v B2Vec2) Length() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
// LengthSquared returns the length squared.
// For performance, use this instead of b2Vec2::Length (if possible).
func (v B2Vec2) LengthSquared() float64 {
return v.X*v.X + v.Y*v.Y
}
// Normalize converts this vector into a unit vector. Returns the length.
func (v *B2Vec2) Normalize() float64 {
length := v.Length()
if length < B2_epsilon {
return 0.0
}
invLength := 1.0 / length
v.X *= invLength
v.Y *= invLength
return length
}
// IsValid returns whether this vector contain finite coordinates.
func (v B2Vec2) IsValid() bool {
return B2IsValid(v.X) && B2IsValid(v.Y)
}
// Skew returns skew vector such that dot(skew_vec, other) == cross(vec, other)
func (v B2Vec2) Skew() B2Vec2 {
return MakeB2Vec2(-v.Y, v.X)
}
// B2Vec3 is 2D column vector with 3 elements.
type B2Vec3 struct {
X, Y, Z float64
}
// MakeB2Vec3 constructs a B2Vec3 using the provided coordinates.
func MakeB2Vec3(xIn, yIn, zIn float64) B2Vec3 {
return B2Vec3{
X: xIn,
Y: yIn,
Z: zIn,
}
}
// NewB2Vec3 returns a reference to a B2Vec3 using the provided coordinates.
func NewB2Vec3(xIn, yIn, zIn float64) *B2Vec3 {
res := MakeB2Vec3(xIn, yIn, zIn)
return &res
}
// SetZero sets this vector to all zeros.
func (v *B2Vec3) SetZero() {
v.X = 0.0
v.Y = 0.0
v.Z = 0.0
}
// Set sets this vector to some specified coordinates.
func (v *B2Vec3) Set(x, y, z float64) {
v.X = x
v.Y = y
v.Z = z
}
// OperatorNegate negates this vector.
func (v B2Vec3) OperatorNegate() B2Vec3 {
return MakeB2Vec3(
-v.X,
-v.Y,
-v.Z,
)
}
// OperatorPlusInplace adds a vector to this vector.
func (v *B2Vec3) OperatorPlusInplace(other B2Vec3) {
v.X += other.X
v.Y += other.Y
v.Z += other.Z
}
// OperatorMinusInplace subtracts a vector from this vector.
func (v *B2Vec3) OperatorMinusInplace(other B2Vec3) {
v.X -= other.X
v.Y -= other.Y
v.Z -= other.Z
}
// OperatorScalarMultInplace multiplies this vector by a scalar.
func (v *B2Vec3) OperatorScalarMultInplace(a float64) {
v.X *= a
v.Y *= a
v.Z *= a
}
// B2Mat22 is a 2-by-2 matrix. Stored in column-major order.
type B2Mat22 struct {
Ex, Ey B2Vec2
}
// The default constructor does nothing
func MakeB2Mat22() B2Mat22 { return B2Mat22{} }
func NewB2Mat22() *B2Mat22 { return &B2Mat22{} }
// Construct this matrix using columns.
func MakeB2Mat22FromColumns(c1, c2 B2Vec2) B2Mat22 {
return B2Mat22{
Ex: c1,
Ey: c2,
}
}
func NewB2Mat22FromColumns(c1, c2 B2Vec2) *B2Mat22 {
res := MakeB2Mat22FromColumns(c1, c2)
return &res
}
// Construct this matrix using scalars.
func MakeB2Mat22FromScalars(a11, a12, a21, a22 float64) B2Mat22 {
return B2Mat22{
Ex: MakeB2Vec2(a11, a21),
Ey: MakeB2Vec2(a12, a22),
}
}
func NewB2Mat22FromScalars(a11, a12, a21, a22 float64) *B2Mat22 {
res := MakeB2Mat22FromScalars(a11, a12, a21, a22)
return &res
}
// Initialize this matrix using columns.
func (m *B2Mat22) Set(c1 B2Vec2, c2 B2Vec2) {
m.Ex = c1
m.Ey = c2
}
// Set this to the identity matrix.
func (m *B2Mat22) SetIdentity() {
m.Ex.X = 1.0
m.Ey.X = 0.0
m.Ex.Y = 0.0
m.Ey.Y = 1.0
}
// Set this matrix to all zeros.
func (m *B2Mat22) SetZero() {
m.Ex.X = 0.0
m.Ey.X = 0.0
m.Ex.Y = 0.0
m.Ey.Y = 0.0
}
func (m B2Mat22) GetInverse() B2Mat22 {
a := m.Ex.X
b := m.Ey.X
c := m.Ex.Y
d := m.Ey.Y
B := MakeB2Mat22()
det := a*d - b*c
if det != 0.0 {
det = 1.0 / det
}
B.Ex.X = det * d
B.Ey.X = -det * b
B.Ex.Y = -det * c
B.Ey.Y = det * a
return B
}
// Solve A * x = b, where b is a column vector. This is more efficient
// than computing the inverse in one-shot cases.
func (m B2Mat22) Solve(b B2Vec2) B2Vec2 {
a11 := m.Ex.X
a12 := m.Ey.X
a21 := m.Ex.Y
a22 := m.Ey.Y
det := a11*a22 - a12*a21
if det != 0.0 {
det = 1.0 / det
}
return MakeB2Vec2(
det*(a22*b.X-a12*b.Y),
det*(a11*b.Y-a21*b.X),
)
}
// B2Mat33 is a 3-by-3 matrix. Stored in column-major order.
type B2Mat33 struct {
Ex, Ey, Ez B2Vec3
}
// The default constructor does nothing (for performance).
func MakeB2Mat33() B2Mat33 { return B2Mat33{} }
func NewB2Mat33() *B2Mat33 { return &B2Mat33{} }
// Construct this matrix using columns.
func MakeB2Mat33FromColumns(c1, c2, c3 B2Vec3) B2Mat33 {
return B2Mat33{
Ex: c1,
Ey: c2,
Ez: c3,
}
}
func NewB2Mat33FromColumns(c1, c2, c3 B2Vec3) *B2Mat33 {
res := MakeB2Mat33FromColumns(c1, c2, c3)
return &res
}
// Set this matrix to all zeros.
func (m *B2Mat33) SetZero() {
m.Ex.SetZero()
m.Ey.SetZero()
m.Ez.SetZero()
}
// B2Rot represents a rotation.
type B2Rot struct {
/// Sine and cosine
S, C float64
}
func MakeB2Rot() B2Rot { return B2Rot{} }
func NewB2Rot() *B2Rot { return &B2Rot{} }
// Initialize from an angle in radians
func MakeB2RotFromAngle(anglerad float64) B2Rot {
return B2Rot{
S: math.Sin(anglerad),
C: math.Cos(anglerad),
}
}
func NewB2RotFromAngle(anglerad float64) *B2Rot {
res := MakeB2RotFromAngle(anglerad)
return &res
}
// Set using an angle in radians.
func (r *B2Rot) Set(anglerad float64) {
r.S = math.Sin(anglerad)
r.C = math.Cos(anglerad)
}
// Set to the identity rotation
func (r *B2Rot) SetIdentity() {
r.S = 0.0
r.C = 1.0
}
// Get the angle in radians
func (r B2Rot) GetAngle() float64 {
return math.Atan2(r.S, r.C)
}
// Get the x-axis
func (r B2Rot) GetXAxis() B2Vec2 {
return MakeB2Vec2(r.C, r.S)
}
// Get the u-axis
func (r B2Rot) GetYAxis() B2Vec2 {
return MakeB2Vec2(-r.S, r.C)
}
// B2Transform contains translation and rotation. It is used to represent
// the position and orientation of rigid frames.
type B2Transform struct {
P B2Vec2
Q B2Rot
}
// The default constructor does nothing.
func MakeB2Transform() B2Transform { return B2Transform{} }
func NewB2Transform() *B2Transform { return &B2Transform{} }
// Initialize using a position vector and a rotation.
func MakeB2TransformByPositionAndRotation(position B2Vec2, rotation B2Rot) B2Transform {
return B2Transform{
P: position,
Q: rotation,
}
}
func NewB2TransformByPositionAndRotation(position B2Vec2, rotation B2Rot) *B2Transform {
res := MakeB2TransformByPositionAndRotation(position, rotation)
return &res
}
// Set this to the identity transform.
func (t *B2Transform) SetIdentity() {
t.P.SetZero()
t.Q.SetIdentity()
}
// Set this based on the position and angle.
func (t *B2Transform) Set(position B2Vec2, anglerad float64) {
t.P = position
t.Q.Set(anglerad)
}
///////////////////////////////////////////////////////////////////////////////
/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
///////////////////////////////////////////////////////////////////////////////
type B2Sweep struct {
LocalCenter B2Vec2 ///< local center of mass position
C0, C B2Vec2 ///< center world positions
A0, A float64 ///< world angles
/// Fraction of the current time step in the range [0,1]
/// c0 and a0 are the positions at alpha0.
Alpha0 float64
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Useful constant
var B2Vec2_zero = MakeB2Vec2(0, 0)
// Perform the dot product on two vectors.
func B2Vec2Dot(a, b B2Vec2) float64 {
return a.X*b.X + a.Y*b.Y
}
// Perform the cross product on two vectors. In 2D this produces a scalar.
func B2Vec2Cross(a, b B2Vec2) float64 {
return a.X*b.Y - a.Y*b.X
}
// Perform the cross product on a vector and a scalar. In 2D this produces
// a vector.
func B2Vec2CrossVectorScalar(a B2Vec2, s float64) B2Vec2 {
return MakeB2Vec2(s*a.Y, -s*a.X)
}
// Perform the cross product on a scalar and a vector. In 2D this produces
// a vector.
func B2Vec2CrossScalarVector(s float64, a B2Vec2) B2Vec2 {
return MakeB2Vec2(-s*a.Y, s*a.X)
}
// Multiply a matrix times a vector. If a rotation matrix is provided,
// then this transforms the vector from one frame to another.
func B2Vec2Mat22Mul(A B2Mat22, v B2Vec2) B2Vec2 {
return MakeB2Vec2(A.Ex.X*v.X+A.Ey.X*v.Y, A.Ex.Y*v.X+A.Ey.Y*v.Y)
}
// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
// then this transforms the vector from one frame to another (inverse transform).
func B2Vec2Mat22MulT(A B2Mat22, v B2Vec2) B2Vec2 {
return MakeB2Vec2(B2Vec2Dot(v, A.Ex), B2Vec2Dot(v, A.Ey))
}
// Add two vectors component-wise.
func B2Vec2Add(a, b B2Vec2) B2Vec2 {
return MakeB2Vec2(a.X+b.X, a.Y+b.Y)
}
// Subtract two vectors component-wise.
func B2Vec2Sub(a, b B2Vec2) B2Vec2 {
return MakeB2Vec2(a.X-b.X, a.Y-b.Y)
}
func B2Vec2MulScalar(s float64, a B2Vec2) B2Vec2 {
return MakeB2Vec2(s*a.X, s*a.Y)
}
func B2Vec2Equals(a, b B2Vec2) bool {
return a.X == b.X && a.Y == b.Y
}
func B2Vec2NotEquals(a, b B2Vec2) bool {
return a.X != b.X || a.Y != b.Y
}
func B2Vec2Distance(a, b B2Vec2) float64 {
return B2Vec2Sub(a, b).Length()
}
func B2Vec2DistanceSquared(a, b B2Vec2) float64 {
c := B2Vec2Sub(a, b)
return B2Vec2Dot(c, c)
}
func B2Vec3MultScalar(s float64, a B2Vec3) B2Vec3 {
return MakeB2Vec3(s*a.X, s*a.Y, s*a.Z)
}
// Add two vectors component-wise.
func B2Vec3Add(a, b B2Vec3) B2Vec3 {
return MakeB2Vec3(a.X+b.X, a.Y+b.Y, a.Z+b.Z)
}
// Subtract two vectors component-wise.
func B2Vec3Sub(a, b B2Vec3) B2Vec3 {
return MakeB2Vec3(a.X-b.X, a.Y-b.Y, a.Z-b.Z)
}
// Perform the dot product on two vectors.
func B2Vec3Dot(a, b B2Vec3) float64 {
return a.X*b.X + a.Y*b.Y + a.Z*b.Z
}
// Perform the cross product on two vectors.
func B2Vec3Cross(a, b B2Vec3) B2Vec3 {
return MakeB2Vec3(a.Y*b.Z-a.Z*b.Y, a.Z*b.X-a.X*b.Z, a.X*b.Y-a.Y*b.X)
}
func B2Mat22Add(A, B B2Mat22) B2Mat22 {
return MakeB2Mat22FromColumns(
B2Vec2Add(A.Ex, B.Ex),
B2Vec2Add(A.Ey, B.Ey),
)
}
// A * B
func B2Mat22Mul(A, B B2Mat22) B2Mat22 {
return MakeB2Mat22FromColumns(
B2Vec2Mat22Mul(A, B.Ex),
B2Vec2Mat22Mul(A, B.Ey),
)
}
// A^T * B
func B2Mat22MulT(A, B B2Mat22) B2Mat22 {
c1 := MakeB2Vec2(
B2Vec2Dot(A.Ex, B.Ex),
B2Vec2Dot(A.Ey, B.Ex),
)
c2 := MakeB2Vec2(
B2Vec2Dot(A.Ex, B.Ey),
B2Vec2Dot(A.Ey, B.Ey),
)
return MakeB2Mat22FromColumns(c1, c2)
}
// Multiply a matrix times a vector.
func B2Vec3Mat33Mul(A B2Mat33, v B2Vec3) B2Vec3 {
one := B2Vec3MultScalar(v.X, A.Ex)
two := B2Vec3MultScalar(v.Y, A.Ey)
three := B2Vec3MultScalar(v.Z, A.Ez)
return B2Vec3Add(
B2Vec3Add(
one,
two,
),
three,
)
}
// Multiply a matrix times a vector.
func B2Vec2Mul22(A B2Mat33, v B2Vec2) B2Vec2 {
return MakeB2Vec2(A.Ex.X*v.X+A.Ey.X*v.Y, A.Ex.Y*v.X+A.Ey.Y*v.Y)
}
// Multiply two rotations: q * r
func B2RotMul(q, r B2Rot) B2Rot {
return B2Rot{
S: q.S*r.C + q.C*r.S,
C: q.C*r.C - q.S*r.S,
}
}
// Transpose multiply two rotations: qT * r
func B2RotMulT(q, r B2Rot) B2Rot {
return B2Rot{
S: q.C*r.S - q.S*r.C,
C: q.C*r.C + q.S*r.S,
}
}
// Rotate a vector
func B2RotVec2Mul(q B2Rot, v B2Vec2) B2Vec2 {
return MakeB2Vec2(
q.C*v.X-q.S*v.Y,
q.S*v.X+q.C*v.Y,
)
}
// Inverse rotate a vector
func B2RotVec2MulT(q B2Rot, v B2Vec2) B2Vec2 {
return MakeB2Vec2(
q.C*v.X+q.S*v.Y,
-q.S*v.X+q.C*v.Y,
)
}
func B2TransformVec2Mul(T B2Transform, v B2Vec2) B2Vec2 {
return MakeB2Vec2(
(T.Q.C*v.X-T.Q.S*v.Y)+T.P.X,
(T.Q.S*v.X+T.Q.C*v.Y)+T.P.Y,
)
}
func B2TransformVec2MulT(T B2Transform, v B2Vec2) B2Vec2 {
px := v.X - T.P.X
py := v.Y - T.P.Y
x := (T.Q.C*px + T.Q.S*py)
y := (-T.Q.S*px + T.Q.C*py)
return MakeB2Vec2(x, y)
}
func B2TransformMul(A, B B2Transform) B2Transform {
q := B2RotMul(A.Q, B.Q)
p := B2Vec2Add(B2RotVec2Mul(A.Q, B.P), A.P)
return MakeB2TransformByPositionAndRotation(p, q)
}
func B2TransformMulT(A, B B2Transform) B2Transform {
q := B2RotMulT(A.Q, B.Q)
p := B2RotVec2MulT(A.Q, B2Vec2Sub(B.P, A.P))
return MakeB2TransformByPositionAndRotation(p, q)
}
// Check if the projected testpoint onto the line is on the line segment
func B2IsProjectedPointOnLineSegment(v1 B2Vec2, v2 B2Vec2, p B2Vec2) bool {
e1 := B2Vec2{v2.X - v1.X, v2.Y - v1.Y}
recArea := B2Vec2Dot(e1, e1)
e2 := B2Vec2{p.X - v1.X, p.Y - v1.Y}
v := B2Vec2Dot(e1, e2)
return v >= 0.0 && v <= recArea
}
// Get projected point p' of p on line v1,v2
func B2ProjectPointOnLine(v1 B2Vec2, v2 B2Vec2, p B2Vec2) B2Vec2 {
e1 := B2Vec2{v2.X - v1.X, v2.Y - v1.Y}
e2 := B2Vec2{p.X - v1.X, p.Y - v1.Y}
valDp := B2Vec2Dot(e1, e2)
len2 := e1.X*e1.X + e1.Y*e1.Y
p1 := B2Vec2{
v1.X + (valDp*e1.X)/len2,
v1.Y + (valDp*e1.Y)/len2,
}
return p1
}
func B2Vec2Abs(a B2Vec2) B2Vec2 {
return MakeB2Vec2(math.Abs(a.X), math.Abs(a.Y))
}
func B2Mat22Abs(A B2Mat22) B2Mat22 {
return MakeB2Mat22FromColumns(
B2Vec2Abs(A.Ex),
B2Vec2Abs(A.Ey),
)
}
func B2Vec2Min(a, b B2Vec2) B2Vec2 {
return MakeB2Vec2(
fastMin(a.X, b.X),
fastMin(a.Y, b.Y),
)
}
func B2Vec2Max(a, b B2Vec2) B2Vec2 {
return MakeB2Vec2(
fastMax(a.X, b.X),
fastMax(a.Y, b.Y),
)
}
func B2Vec2Clamp(a, low, high B2Vec2) B2Vec2 {
return B2Vec2Max(
low,
B2Vec2Min(a, high),
)
}
func B2FloatClamp(a, low, high float64) float64 {
var b, c float64
if B2IsValid(high) {
b = math.Min(a, high)
} else {
b = a
}
if B2IsValid(low) {
c = math.Max(b, low)
} else {
c = b
}
return c
}
// "Next Largest Power of 2
// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
// largest power of 2. For a 32-bit value:"
func B2NextPowerOfTwo(x uint32) uint32 {
x |= (x >> 1)
x |= (x >> 2)
x |= (x >> 4)
x |= (x >> 8)
x |= (x >> 16)
return x + 1
}
func B2IsPowerOfTwo(x uint32) bool {
return x > 0 && (x&(x-1)) == 0
}
func (sweep B2Sweep) GetTransform(xf *B2Transform, beta float64) {
xf.P = B2Vec2Add(sweep.C0, B2Vec2MulScalar(beta, B2Vec2Sub(sweep.C, sweep.C0)))
angle := sweep.A0 + (sweep.A-sweep.A0)*beta
xf.Q.Set(angle)
// Shift to origin
xf.P.OperatorMinusInplace(B2RotVec2Mul(xf.Q, sweep.LocalCenter))
}
func (sweep *B2Sweep) Advance(alpha float64) {
B2Assert(sweep.Alpha0 < 1.0)
beta := (alpha - sweep.Alpha0) / (1.0 - sweep.Alpha0)
sweep.C0.OperatorPlusInplace(B2Vec2MulScalar(beta, B2Vec2Sub(sweep.C, sweep.C0)))
sweep.A0 += beta * (sweep.A - sweep.A0)
sweep.Alpha0 = alpha
}
// Normalize an angle in radians to be between -pi and pi
func (sweep *B2Sweep) Normalize() {
twoPi := 2.0 * B2_pi
d := twoPi * math.Floor(sweep.A0/twoPi)
sweep.A0 -= d
sweep.A -= d
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// b2Math.cpp
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Solve A * x = b, where b is a column vector. This is more efficient
// than computing the inverse in one-shot cases.
func (mat B2Mat33) Solve33(b B2Vec3) B2Vec3 {
det := B2Vec3Dot(mat.Ex, B2Vec3Cross(mat.Ey, mat.Ez))
if det != 0.0 {
det = 1.0 / det
}
// b2Vec3 x;
// x.x = det * b2Dot(b, b2Cross(ey, ez));
// x.y = det * b2Dot(ex, b2Cross(b, ez));
// x.z = det * b2Dot(ex, b2Cross(ey, b));
// return x;
x := det * B2Vec3Dot(b, B2Vec3Cross(mat.Ey, mat.Ez))
y := det * B2Vec3Dot(mat.Ex, B2Vec3Cross(b, mat.Ez))
z := det * B2Vec3Dot(mat.Ex, B2Vec3Cross(mat.Ey, b))
return MakeB2Vec3(x, y, z)
}
// Solve A * x = b, where b is a column vector. This is more efficient
// than computing the inverse in one-shot cases.
func (mat B2Mat33) Solve22(b B2Vec2) B2Vec2 {
a11 := mat.Ex.X
a12 := mat.Ey.X
a21 := mat.Ex.Y
a22 := mat.Ey.Y
det := a11*a22 - a12*a21
if det != 0.0 {
det = 1.0 / det
}
x := det * (a22*b.X - a12*b.Y)
y := det * (a11*b.Y - a21*b.X)
return MakeB2Vec2(x, y)
}
func (mat B2Mat33) GetInverse22(M *B2Mat33) {
a := mat.Ex.X
b := mat.Ey.X
c := mat.Ex.Y
d := mat.Ey.Y
det := a*d - b*c
if det != 0.0 {
det = 1.0 / det
}
M.Ex.X = det * d
M.Ey.X = -det * b
M.Ex.Z = 0.0
M.Ex.Y = -det * c
M.Ey.Y = det * a
M.Ey.Z = 0.0
M.Ez.X = 0.0
M.Ez.Y = 0.0
M.Ez.Z = 0.0
}
// Returns the zero matrix if singular.
func (mat B2Mat33) GetSymInverse33(M *B2Mat33) {
det := B2Vec3Dot(mat.Ex, B2Vec3Cross(mat.Ey, mat.Ez))
if det != 0.0 {
det = 1.0 / det
}
a11 := mat.Ex.X
a12 := mat.Ey.X
a13 := mat.Ez.X
a22 := mat.Ey.Y
a23 := mat.Ez.Y
a33 := mat.Ez.Z
M.Ex.X = det * (a22*a33 - a23*a23)
M.Ex.Y = det * (a13*a23 - a12*a33)
M.Ex.Z = det * (a12*a23 - a13*a22)
M.Ey.X = M.Ex.Y
M.Ey.Y = det * (a11*a33 - a13*a13)
M.Ey.Z = det * (a13*a12 - a11*a23)
M.Ez.X = M.Ex.Z
M.Ez.Y = M.Ey.Z
M.Ez.Z = det * (a11*a22 - a12*a12)
}
func fastMin(a, b float64) float64 {
if a < b {
return a
}
return b
}
func fastMax(a, b float64) float64 {
if a > b {
return a
}
return b
}