forked from WaqasSultani/AnomalyDetectionCVPR2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot_All_ROC.m
35 lines (22 loc) · 790 Bytes
/
Plot_All_ROC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
clc
clear all
close all
ROC_PathAL='/Users/Waqas/Desktop/Presentation/PaperAL/CVPR2018/Code/PublicCode/GithubCode/Paper_Results';
All_files=dir([ROC_PathAL,'/*.mat']);
%All_files=All_files(3:end);
Colors={'b','c','k','r'};
AUC_All=[];
for i=1:length(All_files)
FilePath=[ROC_PathAL,'/',All_files(i).name]
load(FilePath)
plot(X,Y,'Color',Colors{i},'LineWidth',3.5);
hold on;
AUC_All=[AUC_All;AUC]
clear X Y
end
AUC_All*100
legend({'Binary classifier','Lu et al.','Hassan et al.','Proposed with constraints'},'FontSize',16,'Location','southeast');
xlabel('False Positive Rate','FontWeight','normal','FontSize',18);
ylabel('True Positive Rate','FontWeight','normal','FontSize',18);
set(gca,'FontWeight','normal','FontSize',12);
grid on