diff --git a/lerobot/common/policies/tdmpc2/configuration_tdmpc2.py b/lerobot/common/policies/tdmpc2/configuration_tdmpc2.py index 8037875ff..946f70e3d 100644 --- a/lerobot/common/policies/tdmpc2/configuration_tdmpc2.py +++ b/lerobot/common/policies/tdmpc2/configuration_tdmpc2.py @@ -70,13 +70,9 @@ class TDMPC2Config: be non-zero. n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can be zero. - uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating - trajectory values (this is the λ coeffiecient in eqn 4 of FOWM). n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration. elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the elites, when updating the gaussian parameters for CEM. - gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian - parameters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ. max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation is applied. Note that the input images are assumed to be square for this augmentation.