-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
executable file
·165 lines (123 loc) · 4.88 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
from sklearn.metrics import precision_score, recall_score, roc_auc_score, f1_score, average_precision_score
from tqdm import tqdm
from multiprocessing import Pool
## EVALUATING FUNCTION
def pointwise_evaluation(gt_labels, pred_labels, scoring):
## non-iterative
auto_recall = recall_score(gt_labels, pred_labels)
auto_precision = precision_score(gt_labels, pred_labels)
auto_f1 = f1_score(gt_labels, pred_labels)
roc = roc_auc_score(gt_labels, scoring)
prc = average_precision_score(gt_labels, scoring)
scoring = np.array(scoring)
sorted_scoring = np.sort(np.array(scoring))
best_recall, best_precision, best_f1 = 0, 0, 0
## iteratively to get best f1 result
pointwise_f1_evaluator = pointwise_best_f1(gt_labels,scoring)
f1s = pointwise_f1_evaluator.go()
best_index = f1s.index(max(f1s))
best_thres = sorted_scoring[best_index]
best_pred = scoring > best_thres
# Best results
best_f1 = f1_score(gt_labels,best_pred)
best_recall = recall_score(gt_labels,best_pred)
best_precision = precision_score(gt_labels,best_pred)
output = dict(auto_precision=auto_precision,auto_recall=auto_recall,auto_f1=auto_f1,
roc=roc,prc=prc,best_precision=best_precision,
best_recall=best_recall,best_f1=best_f1)
return output
def early_detection_evaluation(truth, scoring, delay=[0,6,30,60,120,180,360]):
assert len(truth) == len(scoring)
output = {}
for d in delay:
early_evaluator = early_best_f1(truth,scoring,d)
early_results = early_evaluator.go()
best_score = max(early_results)
output["delay_"+str(d)] = best_score
return output
class pointwise_best_f1():
def __init__(self,gt_labels,scoring):
self.gt_labels = gt_labels
self.scoring = scoring
self.sorted_scoring = np.sort(np.array(scoring))
def f1_with_thres(self,index):
thres = self.sorted_scoring[index]
pred_labels = self.scoring > thres
f1 = f1_score(self.gt_labels, pred_labels)
return f1
def go(self):
print('processing pointwise best f1')
p = Pool()
sc = p.map(self, range(len(self.scoring)))
return sc
def __call__(self, x):
return self.f1_with_thres(x)
class early_best_f1():
def __init__(self, gt_labels, scoring,delay):
self.gt_labels = gt_labels
self.scoring = scoring
self.sorted_scoring = np.sort(np.array(scoring))
self.delay = delay
# Multi pool
def early_f1(self,idx):
threshold = self.sorted_scoring[idx]
result = np.array(self.scoring) > threshold
score = label_evaluation(self.gt_labels, result.tolist(), self.delay)
return score
def go(self):
print('processing early detection best f1 with delay ',str(self.delay))
p = Pool()
sc = p.map(self, range(len(self.scoring)))
return sc
def __call__(self, x):
return self.early_f1(x)
# consider delay threshold and missing segments
def get_range_proba(predict, label, delay=7):
splits = np.where(label[1:] != label[:-1])[0] + 1
is_anomaly = label[0] == 1
new_predict = np.array(predict)
pos = 0
for sp in splits:
if is_anomaly:
if 1 in predict[pos:min(pos + delay + 1, sp)]:
new_predict[pos: sp] = 1
else:
new_predict[pos: sp] = 0
is_anomaly = not is_anomaly
pos = sp
sp = len(label)
if is_anomaly: # anomaly in the end
if 1 in predict[pos: min(pos + delay + 1, sp)]:
new_predict[pos: sp] = 1
else:
new_predict[pos: sp] = 0
return new_predict
# set missing = 0
def reconstruct_label(timestamp, label):
timestamp = np.asarray(timestamp, np.int64)
index = np.argsort(timestamp)
timestamp_sorted = np.asarray(timestamp[index])
interval = np.min(np.diff(timestamp_sorted))
label = np.asarray(label, np.int64)
label = np.asarray(label[index])
idx = (timestamp_sorted - timestamp_sorted[0]) // interval
new_label = np.zeros(shape=((timestamp_sorted[-1] - timestamp_sorted[0]) // interval + 1,), dtype=int)
new_label[idx] = label
return new_label
def label_evaluation(truth_list, result_list, delay=7):
truth_df = {'timestamp': range(len(truth_list)), 'label': truth_list}
result_df = {'timestamp': range(len(result_list)), 'predict': result_list}
y_true_list = []
y_pred_list = []
# Adapted from: https://arxiv.org/pdf/1906.03821.pdf
truth = truth_df
y_true = reconstruct_label(truth["timestamp"], truth["label"])
result = result_df
y_pred = reconstruct_label(result["timestamp"], result["predict"])
y_pred = get_range_proba(y_pred, y_true, delay)
y_true_list.append(y_true)
y_pred_list.append(y_pred)
# run f1score
fscore = f1_score(np.concatenate(y_true_list), np.concatenate(y_pred_list))
return fscore