-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathmodel.py
273 lines (246 loc) · 9.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 16 20:58:07 2019
@author: customer
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
from skimage.measure import label,regionprops
class ResBlock(nn.Module):
'''(conv => BN => ReLU) * 2'''
def __init__(self, in_ch, out_ch, kernel, Inplace=True,Dilation=1):
super(ResBlock, self).__init__()
padding=((kernel[0]-1)//2,Dilation,Dilation)
dilation=(1,Dilation,Dilation)
self.Conv1=nn.Conv3d(in_ch, out_ch, kernel, padding=padding,dilation=dilation)
self.BN1=torch.nn.InstanceNorm3d(out_ch)
self.Relu=nn.ReLU(inplace=Inplace)
self.Conv2=nn.Conv3d(out_ch, out_ch, kernel, padding=padding,dilation=dilation)
self.BN2=torch.nn.InstanceNorm3d(out_ch)
self.Conv3=nn.Conv3d(out_ch, out_ch, kernel, padding=padding,dilation=dilation)
self.BN3=torch.nn.InstanceNorm3d(out_ch)
def forward(self, x):
x1 = self.Conv1(x)
x2 = self.BN1(x1)
x3 = self.Relu(x2)
x4 = self.Conv2(x3)
x5 = self.BN2(x4)
x6 = self.Relu(x5)
x7 = self.Conv3(x6)
x8 = self.BN3(x7)
x9 = torch.add(x8,x1)
x10 = self.Relu(x9)
return x10
class inconv(nn.Module):
def __init__(self, in_ch, out_ch, Inplace, Dilation=1):
super(inconv, self).__init__()
self.conv = ResBlock(in_ch, out_ch, (1,3,3), Inplace,Dilation)
def forward(self, x):
x = self.conv(x)
return x
class down(nn.Module):
def __init__(self, in_ch, out_ch, p_kernel, Inplace,Dilation=1):
super(down, self).__init__()
self.mpconv = nn.Sequential(
nn.MaxPool3d(p_kernel),
ResBlock(in_ch, out_ch, (3,3,3), Inplace,Dilation)
)
def forward(self, x):
x = self.mpconv(x)
return x
class up(nn.Module):
def __init__(self, in_ch, out_ch, p_kernel, c_kernel, Inplace=True,learn=False,Dilation=1):
super(up, self).__init__()
self.p_kernel=p_kernel
self.learn=learn
if self.learn:
self.up = nn.ConvTranspose3d(in_ch, out_ch, 2, stride=2)#torch.upsample(in_ch, out_ch,)#nn.ConvTranspose3d(in_ch, out_ch, 2, stride=2)
self.fuse = ResBlock(in_ch, out_ch, c_kernel, Inplace,Dilation)
self.conv = nn.Conv3d(in_ch, out_ch, (1,1,1))
self.Relu=nn.ReLU(inplace=Inplace)
def forward(self, x1, x2):
if not self.learn:
x1 = F.upsample(x1, size=(x1.size()[2]*self.p_kernel[0],x1.size()[3]*self.p_kernel[1],x1.size()[4]*self.p_kernel[2]),mode='trilinear')
x1 = self.conv(x1)
x1 = self.Relu(x1)
x = torch.cat([x2, x1], dim=1)
x = self.fuse(x)
return x
class OutconvG(nn.Module):
def __init__(self, in_ch, out_ch):
super(OutconvG, self).__init__()
self.conv = nn.Conv3d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
class OutconvR(nn.Module):
def __init__(self, in_ch, out_ch):
super(OutconvR, self).__init__()
self.conv = nn.Conv3d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
class OutconvC(nn.Module):
def __init__(self, in_ch, out_ch):
super(OutconvC, self).__init__()
self.conv = nn.Conv3d(in_ch, out_ch, 1)
def forward(self, x):
x = self.conv(x)
return x
class GlobalImageEncoder(nn.Module):
def __init__(self, opt):
super(GlobalImageEncoder, self).__init__()
self.opt=opt
self.n_classes=len(opt.DICT_CLASS.keys())
self.Inplace=True
self.Base=opt.BASE_CHANNELS
self.inc = inconv(1, self.Base,self.Inplace,Dilation=opt.STAGE_DILATION[0])
self.down1 = down(self.Base, self.Base*2,(1,2,2),self.Inplace,Dilation=opt.STAGE_DILATION[1])
self.down2 = down(self.Base*2, self.Base*4, (2,2,2),self.Inplace,Dilation=opt.STAGE_DILATION[2])
self.LocTop = OutconvG(self.Base*4, self.n_classes)
def forward(self,x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
LocOut=self.LocTop(x3)
LocOut=F.softmax(LocOut)
return LocOut,[x1,x2,x3]
def TrainForward(self,x,y,GetGlobalFeat=False):
y= F.max_pool3d(y,kernel_size=(2,4,4),stride=(2,4,4))
LocOut,GlobalFeatPyramid=self.forward(x)
if GetGlobalFeat:
return LocOut,y,GlobalFeatPyramid
else:
return LocOut,y
class LocalRegionDecoder(nn.Module):
def __init__(self, opt):
super(LocalRegionDecoder, self).__init__()
self.opt=opt
self.n_classes=len(opt.DICT_CLASS.keys())
self.Inplace=True
self.Base=opt.BASE_CHANNELS
self.up1 = up(self.Base*4, self.Base*2,(2,2,2),(3,3,3),self.Inplace,False,Dilation=opt.STAGE_DILATION[1])
self.up2 = up(self.Base*2, self.Base,(1,2,2),(1,3,3),self.Inplace,False,Dilation=opt.STAGE_DILATION[0])
self.SegTop1 = OutconvR(self.Base, self.n_classes)
self.SegTop2 = OutconvC(self.Base, self.n_classes)
def forward(self,GlobalFeatPyramid,RoIs):
x1=GlobalFeatPyramid[0]
x2=GlobalFeatPyramid[1]
x3=GlobalFeatPyramid[2]
P_Region=[]
P_Contour=[]
for i in range(len(RoIs)):
Zstart=RoIs[i][0]
Ystart=RoIs[i][1]
Xstart=RoIs[i][2]
Zend=RoIs[i][3]
Yend=RoIs[i][4]
Xend=RoIs[i][5]
#RoI TensorPyramid
RoiTensorPyramid=[x3[:,:,Zstart:Zend,Ystart:Yend,Xstart:Xend],\
x2[:,:,Zstart*2:Zend*2,Ystart*2:Yend*2,Xstart*2:Xend*2],\
x1[:,:,Zstart*2:Zend*2,Ystart*4:Yend*4,Xstart*4:Xend*4]]
p = self.up1(RoiTensorPyramid[0], RoiTensorPyramid[1])
p = self.up2(p, RoiTensorPyramid[2])
p_r = self.SegTop1(p)
p_r = F.softmax(p_r)
p_c = self.SegTop2(p)
p_c = F.softmax(p_c)
P_Region.append(p_r)
P_Contour.append(p_c)
return P_Region,P_Contour
def TrainForward(self,GlobalFeatPyramid,RoIs,y_region,y_contour):
Y_Region=[]
Y_Contour=[]
#Extract in-region labels
for i in range(len(RoIs)):
Zstart=RoIs[i][0]
Ystart=RoIs[i][1]
Xstart=RoIs[i][2]
Zend=RoIs[i][3]
Yend=RoIs[i][4]
Xend=RoIs[i][5]
y_region_RoI=y_region[:,:,Zstart*2:Zend*2,Ystart*4:Yend*4,Xstart*4:Xend*4]
y_contour_RoI=y_contour[:,:,Zstart*2:Zend*2,Ystart*4:Yend*4,Xstart*4:Xend*4]
Y_Region.append(y_region_RoI)
Y_Contour.append(y_contour_RoI)
P_Region,P_Contour=self.forward(GlobalFeatPyramid,RoIs)
return P_Region,P_Contour,Y_Region,Y_Contour
class RU_Net(nn.Module):
def __init__(self, opt):
super(RU_Net, self).__init__()
self.opt=opt
self.n_classes=len(opt.DICT_CLASS.keys())
self.Inplace=True
self.Base=48
self.GlobalImageEncoder=GlobalImageEncoder(opt)
self.LocalRegionDecoder=LocalRegionDecoder(opt)
def forward_RoI_Loc(self, x,y):
LocOut,Y=self.GlobalImageEncoder.TrainForward(x,y,False)
return [LocOut,Y]
def Localization(self,LocOut,Train=True):
if Train:
MAX_ROIS=self.opt.MAX_ROIS_TRAIN
else:
MAX_ROIS=self.opt.MAX_ROIS_TEST
LocOut = LocOut.to(device='cpu')
LocOut = LocOut.detach().numpy()
RoIs=[]
#num=0
for i in range(1,self.n_classes):
Heatmap = LocOut[0,i]
Heatmap = (Heatmap-np.min(Heatmap))/(np.max(Heatmap)-np.min(Heatmap))
Heatmap[Heatmap<0.5]=0
Heatmap[Heatmap>=0.5]=1
Heatmap*=255
ConnectMap=label(Heatmap, connectivity= 2)
Props = regionprops(ConnectMap)
Area=np.zeros([len(Props)])
Area=[]
Bbox=[]
for j in range(len(Props)):
Area.append(Props[j]['area'])
Bbox.append(list(Props[j]['bbox']))
OverDesignRange=[1,2,2]
for k in range(3):
if Bbox[j][k]-OverDesignRange[k]<0:
Bbox[j][k]=0
else:
Bbox[j][k]-=OverDesignRange[k]
for k in range(3,6):
if Bbox[j][k]+OverDesignRange[k-3]>=Heatmap.shape[k-3]-1:
Bbox[j][k]=Heatmap.shape[k-3]-1
else:
Bbox[j][k]+=OverDesignRange[k-3]
Area=np.array(Area)
Bbox=np.array(Bbox)
argsort=np.argsort(Area)
Area=Area[argsort]
Bbox=Bbox[argsort]
Area=Area[::-1]
Bbox=Bbox[::-1,:]
max_boxes=MAX_ROIS[self.opt.DICT_CLASS[i]]
if Area.shape[0]>=max_boxes:
OutBbox=Bbox[:max_boxes,:]
elif Area.shape[0]==0:
OutBbox=np.zeros([1,6],dtype=np.int)
OutBbox[0]=[0,0,0,1,1,1]
else:
OutBbox=Bbox
for j in range(OutBbox.shape[0]):
RoIs.append(OutBbox[j,:])
return RoIs
def TrainForward(self, x, y_region, y_contour):
LocOut,y_region_down,GlobalFeatPyramid=self.GlobalImageEncoder.TrainForward(x,y_region,True)
RoIs=self.Localization(LocOut,Train=True)
P_Region,P_Contour,Y_Region,Y_Contour=self.LocalRegionDecoder.TrainForward(GlobalFeatPyramid,RoIs,y_region,y_contour)
return P_Region,P_Contour,Y_Region,Y_Contour,RoIs,[LocOut,y_region_down]
def forward(self, x):
LocOut,GlobalFeatPyramid=self.GlobalImageEncoder.forward(x)
RoIs=self.Localization(LocOut,Train=False)
P_Region,P_Contour=self.LocalRegionDecoder(GlobalFeatPyramid,RoIs)
return P_Region,P_Contour,RoIs