-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_loader.py
268 lines (194 loc) · 8.65 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from __future__ import print_function, division
import sys
import os
import torch
import numpy as np
import random
import csv
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.utils.data.sampler import Sampler
import skimage.io
import skimage.transform
import skimage.color
import skimage
from PIL import Image
class CSV_Dataset(Dataset):
def __init__(self, annotation_file, classes_file, transform=None):
self.annotations_file = annotation_file
self.classes_file = classes_file
with open(self.classes_file, 'r') as file:
self.classes = self.load_classes(csv.reader(file, delimiter=','))
self.labels = {}
for key, value in self.classes.items():
self.labels[value] = key
with open(self.annotations_file, 'r') as file:
self.image_data = self.load_annotations(csv.reader(file, delimiter=','))
self.image_names = list(self.image_data)
self.transform = transform
def __len__(self):
return len(self.image_names)
def __getitem__(self, index):
image = self.read_image(index)
annotations = self.read_annotations(index)
sample = {'image': image, 'annotations': annotations}
if self.transform:
sample = self.transform(sample)
return sample
def load_classes(self, csv_reader):
result = {}
for data in csv_reader:
class_name, class_id = data
class_id = int(class_id)
result[class_name] = class_id
return result
# 返回result: './data/VOCdevkit/VOC2007/JPEGImages/IMG_1140_7.jpeg': [{'x1': 665, 'y1': 479, 'x2': 848, 'y2': 619, 'class_name': 'block'},
# {'x1': 552, 'y1': 393, 'x2': 647, 'y2': 467, 'class_name': 'block'}, {'x1': 907, 'y1': 315, 'x2': 992, 'y2': 402, 'class_name': 'block'}, {'x1': 709, 'y1': 183, 'x2': 827, 'y2': 273, 'class_name': 'block'}]
def load_annotations(self, csv_reader):
result = {}
for data in csv_reader:
image_file, x1, y1, x2, y2, class_name = data
# 把image_file作为字典的key,x1, y1, x2, y2, class_name作为value
if image_file not in result:
result[image_file] = []
if(x1, y1, x2, y2, class_name) == ('', '', '', '', ''):
continue
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
result[image_file].append({'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2, 'class_name': class_name})
return result
def read_image(self, image_name):
# Image读出来的是PIL的类型,而skimage.io读出来的数据是numpy格式的
# 输出可以看出Img读图片的大小是图片的(width, height);而skimage的是(height,width, channel)
image = skimage.io.imread(self.image_names[image_name])
if len(image.shape) == 2:
image = skimage.color.gray2rgb(image)
return image.astype(np.float32) / 255.0
def read_annotations(self, image_name):
annotation_list = self.image_data[self.image_names[image_name]]
annotations = np.zeros((0, 5))
if len(annotation_list) == 0:
return annotations
for a in annotation_list:
# some annotations have basically no width / height, skip them
x1 = a['x1']
x2 = a['x2']
y1 = a['y1']
y2 = a['y2']
annotation = np.zeros((1, 5))
annotation[0, 0] = x1
annotation[0, 1] = y1
annotation[0, 2] = x2
annotation[0, 3] = y2
annotation[0, 4] = self.classes[a['class_name']]
annotations = np.append(annotations, annotation, axis=0)
return annotations
def num_classes(self):
return max(self.classes.values()) + 1
def image_aspect_ratio(self, image_index):
image = Image.open(self.image_names[image_index])
return float(image.width) / float(image.height)
def label_to_name(self, label):
return self.labels[label]
# 将输入的image缩放为608*1024,并得到缩放比例scale
# 将annotations 也按照scale进行缩放
# 返回:缩放后的image,annotations,和scale
class Resizer(object):
"""
reshape the image to an acceptabel size
"""
def __call__(self, sample, min_side=512, max_side=512):
image, annotations = sample['image'], sample['annotations']
rows, cols, cnls = image.shape
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# resize the image with the computed scale
image = skimage.transform.resize(image, (int(round(rows * scale)), int(round((cols * scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
annotations[:, :4] *= scale
return {'image': torch.from_numpy(new_image), 'annotations': torch.from_numpy(annotations), 'scale': scale}
def collater(data):
imgs = [s['image'] for s in data]
annots = [s['annotations'] for s in data]
scales = [s['scale'] for s in data]
widths = [int(s.shape[0]) for s in imgs]
heights = [int(s.shape[1]) for s in imgs]
batch_size = len(imgs)
max_width = np.array(widths).max()
max_height = np.array(heights).max()
padded_imgs = torch.zeros(batch_size, max_width, max_height, 3)
for i in range(batch_size):
img = imgs[i]
padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img
max_num_annots = max(annot.shape[0] for annot in annots)
if max_num_annots > 0:
annot_padded = torch.ones((len(annots), max_num_annots, 5)) * -1
if max_num_annots > 0:
for idx, annot in enumerate(annots):
# print(annot.shape)
if annot.shape[0] > 0:
annot_padded[idx, :annot.shape[0], :] = annot
else:
annot_padded = torch.ones((len(annots), 1, 5)) * -1
padded_imgs = padded_imgs.permute(0, 3, 1, 2)
return {'image': padded_imgs, 'annotations': annot_padded, 'scale': scales}
class Normalizer(object):
def __init__(self):
self.mean = np.array([[[0.485, 0.456, 0.406]]])
self.std = np.array([[[0.229, 0.224, 0.225]]])
def __call__(self, sample):
image, annotations = sample['image'], sample['annotations']
return {'image': ((image.astype(np.float32) - self.mean) / self.std), 'annotations': annotations}
class UnNormalizer(object):
def __init__(self, mean=None, std=None):
if mean == None:
self.mean = [0.485, 0.456, 0.406]
else:
self.mean = mean
if std == None:
self.std = [0.229, 0.224, 0.225]
else:
self.std = std
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
class AspectRatioBasedSampler(Sampler):
def __init__(self, data_source, batch_size, drop_last):
self.data_source = data_source
self.batch_size = batch_size
self.drop_last = drop_last
self.groups = self.group_images()
def __iter__(self):
random.shuffle(self.groups)
for group in self.groups:
yield group
def __len__(self):
if self.drop_last:
return len(self.data_source) // self.batch_size
else:
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
def group_images(self):
# determine the order of the images
order = list(range(len(self.data_source)))
order.sort(key=lambda x: self.data_source.image_aspect_ratio(x))
# divide into groups, one group = one batch
return [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]