-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrun_class_main.py
146 lines (120 loc) · 6.2 KB
/
run_class_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import datetime
import numpy as np
import time
import torch
import utils
import model
import torch.backends.cudnn as cudnn
from engine import *
from pathlib import Path
from base_args import get_args
from datasets import build_dataset
from optim_factory import create_optimizer
from utils import get_model, sel_criterion, load_checkpoint
from utils import NativeScalerWithGradNormCount as NativeScaler
############################################################
def seed_initial(seed=0):
seed += utils.get_rank()
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main(args):
### Configuration
utils.init_distributed_mode(args)
device = torch.device(args.device)
seed_initial(seed=args.seed)
####################################### Get the model
model = get_model(args)
if args.resume:
checkpoint_model = load_checkpoint(model, args)
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
patch_size = model.img_encoder.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
##### Activate the proxy
# proxy = get_model(args)
# if args.resume:
# checkpoint_model = load_checkpoint(proxy, args)
# utils.load_state_dict(proxy, checkpoint_model, prefix=args.model_prefix)
# proxy.to(device)
# if args.distributed:
# proxy = torch.nn.parallel.DistributedDataParallel(proxy, device_ids=[args.gpu], find_unused_parameters=True)
# wp_adver = WeightPerturb(model=model, proxy=proxy, proxy_optim=proxy_opt, gamma=args.awp_gamma)
# proxy_opt = torch.optim.SGD(proxy.parameters(), lr=0.01)
print("------------------------------------------------------")
############## Get the data and dataloader
trainset = build_dataset(is_train=True, args=args)
trainloader = torch.utils.data.DataLoader(dataset=trainset,
sampler=torch.utils.data.RandomSampler(trainset),
num_workers=args.num_workers, pin_memory=True,
batch_size=args.batch_size, shuffle=False)
############################################## Get the test dataloader
valset = build_dataset(is_train=False, args=args)
sampler_val = torch.utils.data.SequentialSampler(valset)
if valset is not None:
dataloader_val = torch.utils.data.DataLoader(
valset, sampler=sampler_val, batch_size=int(1.0 * args.batch_size),
num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False)
else:
dataloader_val = None
############################# Get the optimizer and the other training settings
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(trainset) // total_batch_size
optimizer = create_optimizer(args, model)
loss_scaler = NativeScaler()
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
###################################################### Get the criterion
criterion = sel_criterion(args).to(device)
################################## Auto load the model in the model record folder
if args.eval:
test_stats = evaluate( net=model, dataloader=dataloader_val,
device=device, criterion=criterion, train_type=args.train_type, if_attack=args.if_attack_test)
print(f"Accuracy of the network on the {len(valset)} test samples: {test_stats['acc']*100:.3f}")
exit(0)
################################## Start Training the T-DeepSC
print(f"Start training for {args.epochs} epochs")
max_accuracy = 0.0
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
trainloader.sampler.set_epoch(epoch)
train_stats = train_epoch(
model, criterion, trainloader, optimizer, device, epoch, loss_scaler,
args.train_type, args.if_attack_train, args.clip_grad, start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
update_freq=args.update_freq)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=None)
if dataloader_val is not None:
test_stats = evaluate(net=model, dataloader=dataloader_val,
device=device, criterion=criterion, train_type=args.train_type, if_attack=args.if_attack_test)
print(f"Accuracy of the network on the {len(valset)} test images: {test_stats['acc']*100:.3f}")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)