-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathengine.py
252 lines (208 loc) · 10.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import math
import nltk
import torch.nn as nn
import sys
from utils import *
from tqdm import tqdm
from PIL import Image
from wp_utils import *
from attack import FGSM_REG
from timm.data import Mixup
from einops import rearrange
from typing import Iterable, Optional
from timm.utils import accuracy, AverageMeter
from nltk.translate.bleu_score import sentence_bleu
####################################
beta = 1.0
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale
@torch.no_grad()
def evaluate(net: torch.nn.Module, dataloader: Iterable,
device: torch.device, criterion: torch.nn.Module, train_type='fim', if_attack=False, print_freq=10):
net.eval()
acc_meter = AverageMeter()
loss_meter = AverageMeter()
attack =FGSM_REG(net, 12./255., 2./255., min_val=0, max_val=1, max_iters=8)
with torch.no_grad():
for batch_idx, (imgs, targets) in enumerate(dataloader):
imgs, bm_pos = imgs
imgs, targets = imgs.to(device), targets.to(device)
bm_pos = bm_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
if if_attack:
bum_pos = torch.zeros_like(bm_pos)
bum_pos = bum_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
per_data = attack.perturb(imgs, targets, bum_pos, 'mean', random_start=False, beta=beta)
imgs = per_data
outputs = net(img=imgs, bm_pos=bm_pos, target=targets, _eval=True)
outputs_x = outputs['out_x']
loss = criterion(outputs_x, targets)
batch_size = targets.size(0)
idx, predicted = outputs_x.max(1)
acc_meter.update(predicted.eq(targets).float().mean().item(), n=batch_size)
loss_meter.update(loss.item(), 1)
if batch_idx % print_freq == 0:
print('Test %d/%d: [loss: %.4f] [acc1: %.3f/100]' %(batch_idx*batch_size,
len(dataloader.dataset), loss_meter.avg, acc_meter.avg*100))
test_stat = {'loss': loss_meter.avg,
'acc': acc_meter.avg}
return test_stat
def train_class_batch(model, samples, targets, bm_pos, criterion, train_type):
if train_type.startswith('std'):
outputs = model(img=samples, bm_pos=bm_pos, _eval=False)
outputs_x = outputs['out_x']
loss = criterion(outputs_x, targets)
elif train_type.startswith('fim'):
outputs = model(img=samples, bm_pos=bm_pos, target=targets, _eval=False)
outputs_x = outputs['out_x']
if 'out_c' in outputs.keys():
fim_loss = 0.
for extra_output in outputs['out_c']:
fim_loss += F.cross_entropy(extra_output, targets)
fim_loss = fim_loss / len(outputs['out_c'])
loss = criterion(outputs_x, targets)
loss += beta * fim_loss
if 'vq_loss' in outputs.keys():
loss += outputs['vq_loss']
return loss, outputs_x
def train_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, train_type, if_attack, max_norm: float=0,
start_steps=None,lr_schedule_values=None, wd_schedule_values=None,
update_freq=None, print_freq=50):
model.train(True)
acc_meter = AverageMeter()
loss_meter = AverageMeter()
attack = FGSM_REG(model, 8./255., 2./255., min_val=0, max_val=1, max_iters=4)
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, (samples ,targets) in enumerate(data_loader):
step = data_iter_step // update_freq
it = start_steps + step
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples, bm_pos = samples
targets = targets.to(device, non_blocking=True)
samples = samples.to(device, non_blocking=True)
bm_pos = bm_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
if if_attack:
bum_pos = torch.zeros_like(bm_pos)
bum_pos = bum_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
per_data = attack.perturb(samples, targets, bum_pos, 'mean', random_start=True, beta=beta)
samples = per_data
batch_size = samples.size(0)
with torch.cuda.amp.autocast():
loss, outputs = train_class_batch(
model, samples, targets, bm_pos, criterion, train_type)
loss_value = loss.item()
###### Error
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
###### Update
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
else:
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
min_lr,max_lr = 10., 0.
for group in optimizer.param_groups:
min_lr,max_lr = min(min_lr, group["lr"]),max(max_lr, group["lr"])
acc_meter.update((outputs.max(-1)[-1] == targets).float().mean().item(), n=batch_size)
loss_meter.update(loss_value, 1)
if data_iter_step % print_freq == 0:
print('Epoch:[%d] %d/%d: [loss: %.3f] [acc1: %.3f /100] [lr: %.3e]'
%(epoch, batch_size*data_iter_step, len(data_loader.dataset),
loss_meter.avg, acc_meter.avg*100, max_lr))
train_stat = {'loss': loss_meter.avg,
'acc': acc_meter.avg}
return train_stat
def train_epoch_wp(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, train_type, if_attack, wp_adver, max_norm: float=0,
start_steps=None,lr_schedule_values=None, wd_schedule_values=None,
update_freq=None, print_freq=50):
model.train(True)
acc_meter = AverageMeter()
loss_meter = AverageMeter()
attack = FGSM_REG(model, 8./255., 2./255., min_val=0, max_val=1, max_iters=4)
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, (samples ,targets) in enumerate(data_loader):
step = data_iter_step // update_freq
it = start_steps + step
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples, bm_pos = samples
targets = targets.to(device, non_blocking=True)
samples = samples.to(device, non_blocking=True)
bm_pos = bm_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
if if_attack:
bum_pos = torch.zeros_like(bm_pos)
bum_pos = bum_pos.to(device, non_blocking=True).flatten(1).to(torch.bool)
per_data = attack.perturb(samples, targets, bum_pos, 'mean', random_start=True, beta=beta)
samples = per_data
if epoch >= 5:
awp = wp_adver.calc_awp(inputs_adv=samples,
targets=targets)
wp_adver.perturb(awp)
batch_size = samples.size(0)
with torch.cuda.amp.autocast():
loss, outputs = train_class_batch(
model, samples, targets, bm_pos, criterion, train_type)
loss_value = loss.item()
###### Error
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
###### Update
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
model.step()
else:
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
min_lr,max_lr = 10., 0.
for group in optimizer.param_groups:
min_lr,max_lr = min(min_lr, group["lr"]),max(max_lr, group["lr"])
if epoch >= 10:
wp_adver.restore(awp)
acc_meter.update((outputs.max(-1)[-1] == targets).float().mean().item(), n=batch_size)
loss_meter.update(loss_value, 1)
if data_iter_step % print_freq == 0:
print('Epoch:[%d] %d/%d: [loss: %.3f] [acc1: %.3f /100] [lr: %.3e]'
%(epoch, batch_size*data_iter_step, len(data_loader.dataset),
loss_meter.avg, acc_meter.avg*100, max_lr))
train_stat = {'loss': loss_meter.avg,
'acc': acc_meter.avg}
return train_stat