-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathchannel.py
167 lines (136 loc) · 5.18 KB
/
channel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math
import torch
import numpy as np
bit_per_symbol = 4 # bits per symbol (64QAM)
mapping_table = {
(1,0,1,0) : -3-3j,
(1,0,1,1) : -3-1j,
(1,0,0,1) : -3+1j,
(1,0,0,0) : -3+3j,
(1,1,1,0) : -1-3j,
(1,1,1,1) : -1-1j,
(1,1,0,1) : -1+1j,
(1,1,0,0) : -1+3j,
(0,1,1,0) : 1-3j,
(0,1,1,1) : 1-1j,
(0,1,0,1) : 1+1j,
(0,1,0,0) : 1+3j,
(0,0,1,0) : 3-3j,
(0,0,1,1) : 3-1j,
(0,0,0,1) : 3+1j,
(0,0,0,0) : 3+3j,
}
demapping_table = {v : k for k, v in mapping_table.items()}
def split(word):
return [char for char in word]
def group_bits(bitc):
bity = []
x = 0
for i in range((len(bitc)//bit_per_symbol)):
bity.append(bitc[x:x+bit_per_symbol])
x = x+bit_per_symbol
return bity
def channel(signal, SNRdb, ouput_power=False):
signal_power = np.mean(abs(signal**2))
sigma2 = signal_power * 10**(-SNRdb/10) # calculate noise power based on signal power and SNR
if ouput_power:
print ("RX Signal power: %.4f. Noise power: %.4f" % (signal_power, sigma2))
# Generate complex noise with given variance
noise = np.sqrt(sigma2/2) * (np.random.randn(*signal.shape)+1j*np.random.randn(*signal.shape))
return signal + noise
def channel_Rayleigh(signal, SNRdb, ouput_power=False):
shape = signal.shape
sigma = math.sqrt(1/2)
H = np.random.normal(0.0, sigma , size=[1]) + 1j*np.random.normal(0.0, sigma, size=[1])
Tx_sig = signal* H
Rx_sig = channel(Tx_sig, SNRdb, ouput_power=False)
# Channel estimation
Rx_sig = Rx_sig / H
return Rx_sig
def channel_Rician(signal, SNRdb, ouput_power=False,K=1):
shape = signal.shape
mean = math.sqrt(K / (K + 1))
std = math.sqrt(1 / (K + 1))
H = np.random.normal(mean, std , size=[1]) + 1j*np.random.normal(mean, std, size=[1])
Tx_sig = signal* H
Rx_sig = channel(Tx_sig, SNRdb, ouput_power=False)
# Channel estimation
Rx_sig = Rx_sig / H
return Rx_sig
def Demapping(QAM):
# array of possible constellation points
constellation = np.array([x for x in demapping_table.keys()])
# calculate distance of each RX point to each possible point
dists = abs(QAM.reshape((-1,1)) - constellation.reshape((1,-1)))
# for each element in QAM, choose the index in constellation that belongs to the nearest constellation point
const_index = dists.argmin(axis=1)
# get back the real constellation point
hardDecision = constellation[const_index]
# transform the constellation point into the bit groups
return np.vstack([demapping_table[C] for C in hardDecision]), hardDecision
def transmit(data, SNRdb, bits_per_digit):
TX_signal = data[:].cpu().numpy().flatten()
Tx_data_binary = []
# Produce binary data
for i in TX_signal:
Tx_data_binary.append('{0:b}'.format(i).zfill(bits_per_digit))
Tx_data = []
Tx_data_ready = []
for i in Tx_data_binary:
Tx_data.append(split(i))
img_for_trans1 = np.vstack(Tx_data)
for i in img_for_trans1:
for j in range(bits_per_digit):
Tx_data_ready.append(int(i[j]))
Tx_data_ready = np.array(Tx_data_ready)
ori_len = len(Tx_data_ready)
padding_len = ori_len
if ori_len % 4 != 0:
padding_len = ori_len + (bit_per_symbol - (ori_len % bit_per_symbol))
Whole_tx_data = np.zeros(padding_len,dtype=int)
Whole_tx_data[:ori_len] = Tx_data_ready
bit_group = group_bits(Whole_tx_data)
bit_group = np.array(bit_group)
# bit is mapped into the QAM symbols
QAM_symbols = []
for bits in bit_group:
symbol = mapping_table[tuple(bits)]
QAM_symbols.append(symbol)
QAM_symbols = np.array(QAM_symbols)
Rx_symbols = channel(QAM_symbols, SNRdb) #Pass the Guassian Channel
Rx_bits, hardDecision = Demapping(Rx_symbols)
# Reconstruct the tx data by using the Rx bits
data_rea = []
Rx_long = Rx_bits.reshape(-1,)[0:ori_len]
k = 0
for i in range(Rx_long.shape[0]//bits_per_digit):
data_rea.append(Rx_long[k:k+bits_per_digit])
k+=bits_per_digit
data_done = []
for i in data_rea[:]:
x = []
for j in range(len(i)):
x.append(str(i[j]))
data_done.append(x)
sep = ''
data_fin = []
for i in data_done:
data_fin.append(sep.join(i))
data_dec = []
for i in data_fin:
data_dec.append(i[0:bits_per_digit])
data_dec = np.array(data_dec)
data_back = []
for i in range(len(Tx_data_binary)):
data_back.append(int(data_dec[i],2))
data_back = np.array(data_back)
return data_back
def power_norm_batchwise(signal, power=1):
batchsize , num_elements = signal.shape[0], len(signal[0].flatten())
num_complex = num_elements//2
signal_shape = signal.shape
signal = signal.view(batchsize, num_complex, 2)
signal_power = torch.sum((signal[:,:,0]**2 + signal[:,:,1]**2), dim=-1)/num_complex
signal = signal * math.sqrt(power) / torch.sqrt(signal_power.unsqueeze(-1).unsqueeze(-1))
signal = signal.view(signal_shape)
return signal