forked from ox-vgg/follow-things-around
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracking.py
652 lines (547 loc) · 24.4 KB
/
tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# %% [markdown] id="AR4oetmCFHUa"
# # VGG Follow Things Around
#
# Follow Things Around is a program to detect and track multiple
# objects in videos. We currently support the tracking of chimpanzee
# faces, birds, cats, dogs, horses, sheep, cows, elephants, bears,
# zebras, and giraffes and are expanding the list of things that it
# can track. Please contact us at if you are interested in tracking
# other things.
#
# Follow Things Around works by performing a two-step approach named
# "tracking by detection". First, it detect the "things" of interest
# in all frames of a video and then, it tracks those detections
# merging them into individual tracks and filling in gaps from the
# detector.
# %% [markdown] id="O3vImnLxFHUf"
# ## 1 - Read Me First
#
# This project is a [Jupyter](https://jupyter.org/) notebook to
# perform tracking by detection of multiple objects in videos and was
# designed to run in [Google
# Colab](https://colab.research.google.com/). If you are not reading
# this notebook in Google Colab, click
# [here](https://colab.research.google.com/github/ox-vgg/follow-things-around/blob/main/tracking.ipynb).
#
# %% [markdown] id="-tfDPTizFHUi"
# ### 1.1 - What is, and how to use, a Jupyter notebook
#
# A Jupyter notebook is a series of "cells". Each cell contains either
# text (like this one) or code (like others below). A cell that
# contains code will have a "Run cell" button on the left side like this
# "<img height="18rem" alt="The 'Run cell' button in Colab"
# src="">".
# When you click the "Run cell" button, the code in that cell will run
# and when it finishes, a green check mark appears next to the "Run
# cell" button". You need to wait for the code in that cell to finish
# before "running" the next cell.
#
# %% [markdown] id="4kkvU97kDjYh"
# ### 1.2 - Particulars of this notebook
#
# This notebook was designed to run in Google Colab and to analyse
# videos in Google Drive. It will also save back the analysis results
# in Google Drive. As such, it requires a Google account.
#
# You must run the cells on this notebook one after the other since each
# cell is dependent on the results of the previous cell.
#
# This notebook also some interactive cells, namely in the options
# sections. After setting their values, these cells must be run, just
# like other code cells. Setting their values only has effect after you
# "run" their cell.
# %% [markdown] id="meUaiJq1V-tI"
# ### 1.3 - Testing this notebook
#
# We recommend you first test this notebook with a short video, less
# than 20 seconds long. First, try our own sample video to track
# chimpanzee faces (download it
# [here](https://thor.robots.ox.ac.uk/software/chimpanzee-tracking/test-data/19-mini.mp4)).
# Then try a video fragment of your own video. Finally, run it on
# your full video.
# %% [markdown] id="iXk_VjsyDmtS"
# ### 1.4 - Results files
#
# This notebook will save all results for a single video in one
# directory. It will generate the following files:
#
# - `frames` - a directory with the individual video frames. You may
# want to delete them after validating the results. They take up a
# lot of space and can be regenerated later.
#
# - `detections.pkl` - the initial detections in [Python's pickle
# format](https://docs.python.org/3/library/pickle.html).
#
# - `detections-via.json` - the initial detections as a
# [VIA 2](https://www.robots.ox.ac.uk/~vgg/software/via/) project.
# This requires the images in the `frames` directory.
#
# - `tracks.pkl` - the detected tracks in [Python's pickle
# format](https://docs.python.org/3/library/pickle.html).
#
# - `results-via-project.json` - the final detections as a [VIA
# 2](https://www.robots.ox.ac.uk/~vgg/software/via/) project. This
# requires the images in the `frames` directory.
#
# - `results.csv` - the final detections in CSV format.
#
# - `tracks.mp4` - video with tracks (see Section 6).
#
# Note that none of those files includes the input video filename.
# Our recommendation is to create separate results directory for each
# video.
#
# %% [markdown] id="vuE9bu6GDpOv"
# ### 1.5 - GPU access
#
# A GPU is required to run this pipeline in a sensible manner. For
# example, without a GPU, a two minutes video will take close to two
# hours to process.
#
# By default, this notebook will run with a GPU. However, it is
# possible that you were not allocated one, typically because you've
# used up all your GPU resources. You can confirm this, and possibly
# change it, manually. To do that, navigate to "Edit" -> "Notebook
# Settings" and select "GPU" from the "Hardware Accelerator" menu.
#
# %% [markdown] id="AU4JuuRqDrxQ"
# ### 1.6 - Moving forward
#
# You can run this notebook on Google Colab but if you have a large
# collection of videos or if your videos are particularly long or have
# a high number of objects to track, you may end up using up all of
# your free Colab resources.
#
# Once you've tested Follow Things Around with a few of your videos,
# it may be worth running this on your own computers. Contact us if
# you need help to do that. Alternatively, you can purchase
# additional "compute units" with [Google Colab
# Plans](https://colab.research.google.com/signup).
#
# %% [markdown] id="wWhspjzoFHUl"
# ## 2 - Setup
#
# %% [markdown] id="z9eagfzTBgMh"
# ### 2.1 - Check for GPU access
#
# %% cellView="form" id="k72IXhXhFHUn"
#@markdown By default, this notebook will run with a GPU. However, it
#@markdown is possible that you were not allocated one. If you get a
#@markdown message saying that you do not have access to a GPU,
#@markdown navigate to "Edit" -> "Notebook Settings" and select "GPU"
#@markdown from the "Hardware Accelerator" menu. Once you change it,
#@markdown you need to run this cell again.
import torch.cuda
if torch.cuda.is_available():
USE_GPU = True
print("You are using this GPU:")
print(
"GPU %d: %s (%d GB)"
% (
torch.cuda.current_device(),
torch.cuda.get_device_name(),
torch.cuda.get_device_properties(
torch.cuda.current_device()
).total_memory
* 1e-9,
)
)
else:
USE_GPU = False
print("You are NOT connected to a GPU. This will run very slow.")
print("Consider reconnecting to a runtime with GPU access.")
# %% [markdown] id="0jKiMdsdBpQO"
# ### 2.2 - Install and load dependencies
#
# %% cellView="form" id="y3Nw3Km_FHUp"
#@markdown This step can take a few of minutes to finish.
# We only need install follow-things-around but that depends on SVT
# and Detectron2 which are not available on PyPI, so pip won't be able
# to find them, and we have to install them ourselves from their git
# repos.
# Using `pip install --quiet` is not enough, it still prints out a
# mysterious "Preparing metadata (setup.py)" message which is why we
# redirect stdout to `/dev/null`. Important messages should go to
# stderr anyway.
# The SVT package
# https://www.robots.ox.ac.uk/~vgg/projects/seebibyte/software/svt/
print("Installing SVT")
# !pip install --quiet git+https://gitlab.com/vgg/svt/ > /dev/null
# The Detectron2 package
# https://github.com/facebookresearch/detectron2/
print("Installing detectron2 (this will take a few minutes to finish)")
# !pip install --quiet git+https://github.com/facebookresearch/detectron2.git > /dev/null
# Finally, Follow-Things-Around
print("Installing Follow-Things-Around")
# !pip install --quiet 'follow-things-around[colab] @ git+https://github.com/ox-vgg/follow-things-around.git'
import glob
import json
import logging
import os
import os.path
import pickle
import google.colab.drive
import google.colab.output
import requests
import torch
import follow_things_around
from follow_things_around import (
detect,
ffmpeg_video_to_frames,
filter_detections,
make_video_with_tracks,
track,
FramesDirDataset,
)
from follow_things_around.via import detections_to_via2
from follow_things_around.widgets import display_detections
logging.basicConfig()
_logger = logging.getLogger()
# %% [markdown] id="chRTgjgMCJdd"
# ### 2.3 - Mount Google Drive
#
# %% cellView="form" id="iOD4aWrjFHUr"
#@markdown When you run this cell, a dialog will appear about a
#@markdown request for access to your Google Drive Files. This is
#@markdown required to access the videos for analysis and to then save
#@markdown the results. Once you click on "Connect to Google Drive",
#@markdown a pop-up window will appear to choose a Google Account and
#@markdown then to allow access to "Google Drive for desktop".
google.colab.drive.mount('/content/drive')
# %% [markdown] id="Elhia5LHRFZf"
# ### 2.4 - Select "thing" to track
#
# %% cellView="form" id="WFYckNS4Ztud"
#@markdown A model trained on the "thing" of interest is required. We
#@markdown currently have models for these things but it is possible
#@markdown to train new ones. Please contact us if you require a
#@markdown detector for something else or if you require to fine-tune
#@markdown them.
#@markdown
#@markdown Do not forget to "run" this cell after making your
#@markdown selection.
THING_TO_TRACK = "Chimpanzee faces" #@param ["Chimpanzee faces", "Orangutan faces", "Chimpanzee bodies", "Birds", "Cats", "Dogs", "Horses", "Sheep", "Cows", "Elephants", "Bears", "Zebras", "Giraffes"]
THING_TO_MODEL_CONFIG = {
"Chimpanzee faces": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_LSJ-CFbootstrap.py",
"class-idx": 0,
},
"Orangutan faces": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_LSJ-orangutan-faces.py",
"class-idx": 0,
},
"Chimpanzee bodies": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_LSJ-imdb_5k_sup.py",
"class-idx": 0,
},
"Birds": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 14,
},
"Cats": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 15,
},
"Dogs": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 16,
},
"Horses": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 17,
},
"Sheep": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 18,
},
"Cows": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 19,
},
"Elephants": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 20,
},
"Bears": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 21,
},
"Zebras": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 22,
},
"Giraffes": {
"config-url": "https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/mask_rcnn_R_50_FPN_400ep_LSJ-coco2017.py",
"class-idx": 23,
},
}
if THING_TO_TRACK not in THING_TO_MODEL_CONFIG:
raise Exception(
'THING_TO_TRACK \'%s\' has no pre-configuration \'%s\''
% (THING_TO_TRACK, list(THING_TO_MODEL_CONFIG.keys()))
)
# %% [markdown] id="lb_oICb3CPpC"
# ### 2.5 - Video file and results folder
#
# %% cellView="form" id="Gk90XC-8FHUs"
#@markdown To find the correct path, open the "Files" menu in the left
#@markdown sidebar. The `drive` directory contains your Google Drive
#@markdown files. Navigate the files, right click on the wanted file
#@markdown or directory, and select "Copy path". Then paste the path
#@markdown in this form. Do not forget to then "run" this cell.
VIDEO_FILE = '' #@param {type:"string"}
RESULTS_DIRECTORY = '' #@param {type:"string"}
if not VIDEO_FILE:
raise Exception('VIDEO_FILE is empty, you must set it.')
if not RESULTS_DIRECTORY:
raise Exception('RESULTS_DIRECTORY is empty, you must set it.')
if not os.path.isfile(VIDEO_FILE):
raise Exception('The VIDEO_FILE \'%s\' does not exist' % VIDEO_FILE)
if not os.path.isdir(RESULTS_DIRECTORY):
raise Exception(
'The RESULTS_DIRECTORY \'%s\' does not exist' % RESULTS_DIRECTORY
)
# %% [markdown] id="7c1gbeVrFHUu"
# ### 2.6 - Advanced options
#
# The cells hidden in this section expose the advanced options for this
# pipeline and perform the final setup. In most cases you do not need
# to change their values. You can click the "Run cell" button to run
# all the hidden cells inside.
#
# %% cellView="form" id="SH-IeyipFHUv"
#@markdown #### 2.6.1 - Detection step
#@markdown The detection step is the first step. It detects the
#@markdown location of the "things" of interest in all frames of the
#@markdown video.
#@markdown A detection model is required. You can either train
#@markdown your own model, or you can use one of our pre-trained
#@markdown models. This variable is the URL, or file path, for a
#@markdown detectron2 model configuration (the URI and file path for
#@markdown the model weights are specified in the config file).
#@markdown
#@markdown Leave this empty to use the pre-configured model to detect
#@markdown the `THING_TO_TRACK` choosen in Section 2.4.
DETECTION_MODEL_CONFIG_URL = '' #@param {type: "string"}
DETECTION_CLASS_IDX = 0
if not DETECTION_MODEL_CONFIG_URL:
DETECTION_MODEL_CONFIG_URL = THING_TO_MODEL_CONFIG[THING_TO_TRACK]["config-url"]
DETECTION_CLASS_IDX = THING_TO_MODEL_CONFIG[THING_TO_TRACK]["class-idx"]
#@markdown When the model detects something, that detection is
#@markdown made with a confidence score. Detections with a confidence
#@markdown score lower than the threshold will be ignored during
#@markdown tracking. If you set the threshold too high, you may miss
#@markdown detections in some frames which need to be filled by the
#@markdown tracker.. If you set it too low, false detections will
#@markdown lead to false tracks that need to be manually removed
#@markdown later.
DETECTION_THRESHOLD = 0.9 #@param {type: "slider", min: 0.0, max: 1.0, step: 0.01}
# %% cellView="form" id="nmuWC94sFHUw"
#@markdown #### 2.6.2 - Tracking step
#@markdown The final step is to merge the detections into individual
#@markdown tracks.
#@markdown You will need to provide a model for the tracker. We
#@markdown recommend you use [this
#@markdown one](https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/tracking-model-20181031_e45.pth).
#@markdown Alternatively, you can also specify a path in your Google
#@markdown Drive.
TRACKING_MODEL_URL = 'https://thor.robots.ox.ac.uk/models/staging/chimp-tracking/tracking-model-20181031_e45.pth' #@param {type: "string"}
MATCH_OVERLAP_THRESHOLD = 0.2 #@param {type:"slider", min:0.0, max:1.0, step:0.01}
NONMATCH_TRACKING_THRESHOLD = 0.9 #@param {type:"slider", min:0.0, max:1.0, step:0.01}
UNKNOWN_TRACK_ID_MARKER = -1
# %% cellView="form" id="YUIcftRMFHUy"
#@markdown #### 2.6.3 - Verbosity
#@markdown How chatty do you want the notebook to be? INFO is a good
#@markdown choice if you want to have a feeling for progress.
LOG_LEVEL = 'INFO' #@param ["CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG"]
# %% cellView="form" id="OWKXpxAuFHUy"
#@markdown #### 2.6.4 - The final setup step
#@markdown Run this cell to perform the final pipeline setup based on
#@markdown the given options.
logging.getLogger().setLevel(LOG_LEVEL)
FRAMES_DIR = os.path.join(RESULTS_DIRECTORY, 'frames')
DETECTIONS_PKL_FPATH = os.path.join(RESULTS_DIRECTORY, 'detections.pkl')
DETECTIONS_VIA_FPATH = os.path.join(RESULTS_DIRECTORY, 'detections-via.json')
TRACKS_PKL_FPATH = os.path.join(RESULTS_DIRECTORY, 'tracks.pkl')
RESULTS_VIA_FPATH = os.path.join(RESULTS_DIRECTORY, 'results-via-project.json')
RESULTS_CSV_FPATH = os.path.join(RESULTS_DIRECTORY, 'results.csv')
TRACKS_VIDEO_FPATH = os.path.join(RESULTS_DIRECTORY, 'tracks.mp4')
# These should never be true because USE_GPU was set automatically
# based on whether a GPU is available.
if USE_GPU and not torch.cuda.is_available():
raise Exception('Your runtime does not have a GPU.')
elif torch.cuda.is_available() and not USE_GPU:
_logger.warn('You have a GPU but chose to not use it. Are you sure?')
if USE_GPU:
DEFAULT_DEVICE = 'cuda'
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
DEFAULT_DEVICE = 'cpu'
torch.set_default_tensor_type('torch.FloatTensor')
_logger.info('Will use %s device.', DEFAULT_DEVICE.upper())
# Required to display the tracking results with plotly or matplotlib.
google.colab.output.enable_custom_widget_manager()
follow_things_around.DEFAULT_DEVICE = DEFAULT_DEVICE
follow_things_around.FRAMES_DIR = FRAMES_DIR
follow_things_around.MATCH_OVERLAP_THRESHOLD = MATCH_OVERLAP_THRESHOLD
follow_things_around.NONMATCH_TRACKING_THRESHOLD = NONMATCH_TRACKING_THRESHOLD
follow_things_around.UNKNOWN_TRACK_ID_MARKER = UNKNOWN_TRACK_ID_MARKER
follow_things_around.USE_GPU = USE_GPU
follow_things_around.VIDEO_FILE = VIDEO_FILE
logging2ffmpeg_loglevel = {
'CRITICAL': 'fatal',
'ERROR': 'error',
'WARNING': 'warning',
'INFO': 'info',
'DEBUG': 'debug',
}
follow_things_around.FFMPEG_LOG_LEVEL = logging2ffmpeg_loglevel[LOG_LEVEL]
# %% [markdown] id="XIgX5CS8FHU0"
# ## 3 - Convert video to frames
#
# The pipeline needs the video frames as individual image files. This
# cell will create a `frames` directory and save the individual images
# there. You may skip running this cell if you already have a `frames`
# directory with images. This cell will error if the `frames` directory
# already exists to prevent overwriting any existing data.
#
# %% cellView="form" id="E4xj4YRWFHU0"
#@markdown Skip this cell if you already have the frames. If you run
#@markdown this cell and the `frames` directory already exists, it
#@markdown errors to avoid overwriting any previous images.
os.makedirs(FRAMES_DIR, exist_ok=False)
ffmpeg_video_to_frames(VIDEO_FILE, FRAMES_DIR)
_logger.info('Finished extracting individual frames to \'%s\'', FRAMES_DIR)
# %% [markdown] id="AAhN5CkMFHU0"
# ## 4 - Detection step
#
# The detection of "things" is the first step in the pipeline. If you
# have previously run the detection step then you will have a
# `detections.pkl` file in the results directory. If so, skip the
# "Run detection" cell (section 4.1) and run the "Load previous
# detections results" cell instead (section 4.2).
#
# %% cellView="form" id="jk_beBJTFHU2"
#@markdown ### 4.1 - Run detection (option 1)
dataset = FramesDirDataset(FRAMES_DIR)
if len(dataset) == 0:
raise Exception(
"No files in '%s'. Did you run the previous section which converts"
" the video to frames?" % FRAMES_DIR
)
detections = detect(dataset, DETECTION_MODEL_CONFIG_URL, DETECTION_CLASS_IDX)
with open(DETECTIONS_PKL_FPATH, 'wb') as fh:
pickle.dump({'detections': detections}, fh)
_logger.info("Detection results saved to '%s'", DETECTIONS_PKL_FPATH)
with open(DETECTIONS_VIA_FPATH, 'w') as fh:
json.dump(detections_to_via2(dataset, detections), fh)
_logger.info("Detection VIA project saved to '%s'", DETECTIONS_VIA_FPATH)
# %% cellView="form" id="xHVc5I4EFHU2"
#@markdown ### 4.2 - Load previous detection results (option 2)
dataset = FramesDirDataset(FRAMES_DIR)
if len(dataset) == 0:
raise Exception(
"No files in '%s'. Did you run the previous section which converts"
" the video to frames?" % FRAMES_DIR
)
with open(DETECTIONS_PKL_FPATH, 'rb') as fh:
loaded_detections = pickle.load(fh)
detections = loaded_detections['detections']
_logger.info('Detection results loaded from \'%s\'', DETECTIONS_PKL_FPATH)
# %% [markdown] id="FN5FGZxJFHU3"
# ## 5 - Tracking step
#
# The final step in the pipeline is to track the things detected in
# the detection step. At the end of this step, the tracking results
# will be saved in a CSV file and as a
# [VIA](https://www.robots.ox.ac.uk/~vgg/software/via/) project.
#
# If you have previously run the tracking step then you will have a
# `tracks.pkl` file in the results directory. If so, skip the "Run
# tracking" cell (section 5.1) and run the "Load previous tracking
# results" cell instead (section 5.2).
# %% cellView="form" id="GodRuQQ4FHU3"
#@markdown ### 5.1 - Run tracking (option 1)
tracks = track(
dataset,
filter_detections(detections, DETECTION_THRESHOLD),
TRACKING_MODEL_URL,
)
tracks.export_via_project(
RESULTS_VIA_FPATH,
config={
'frame_img_dir': dataset.frames_dir,
'via_project_name': '',
},
)
tracks.export_plain_csv(RESULTS_CSV_FPATH, {})
with open(TRACKS_PKL_FPATH, 'wb') as fh:
pickle.dump({'tracks': tracks}, fh)
_logger.info('Tracking results saved to \'%s\'', TRACKS_PKL_FPATH)
# %% cellView="form" id="_TQC37GrNTFw"
#@markdown ### 5.2 - Load previous tracking results (option 2)
with open(TRACKS_PKL_FPATH, 'rb') as fh:
loaded_tracks = pickle.load(fh)
tracks = loaded_tracks['tracks']
_logger.info('Tracking results loaded from \'%s\'', TRACKS_PKL_FPATH)
# %% [markdown] id="1XoTxVlsFHU3"
# ## 6 - Visualise results
#
# %% [markdown] id="LL5er1FZCiBo"
# ### 6.1 - Visualise in Google Colab (option 1)
#
# %% cellView="form" id="4sbn8DsHIi1C"
#@markdown You can see the tracking results right here, inside this
#@markdown Google Colab notebook, but the interface is a bit slow.
#@markdown This is fine if you want to have a quick look at some of
#@markdown of frames only.
#@markdown Run this cell and then click on the arrow buttons to
#@markdown display the next or previous frame, and you can move the
#@markdown slider to move to a specific frame. When you dragging the
#@markdown slider, the displayed frame is only updated once the slider
#@markdown is released. Expect a couple of seconds wait for the frame
#@markdown to be updated.
display_detections(dataset, tracks.detection_data['0'])
# %% [markdown] id="i5FjIafRC8te"
# ### 6.2 - Visualise locally with VIA (option 2)
#
# %% [markdown] id="QBdj3CToLPVG"
# [VIA](https://www.robots.ox.ac.uk/~vgg/software/via/) is a web
# application to view and perform annotations of image, audio, and
# video. It is free software and runs locally on the web browser. You
# can view the tracking results on the individual frames with VIA.
#
# This is much more responsive than viewing inside the notebook but
# requires download the frames locally (either manually or with [Google
# Drive for
# Desktop](https://support.google.com/a/users/answer/13022292)).
#
# 1. Download [VIA
# 2](https://www.robots.ox.ac.uk/~vgg/software/via/downloads/via-2.0.12.zip).
# This is a zip file. Open it. Inside there is a `via.html` file.
# Open it in your web browser to start VIA.
#
# 2. Download the `results-via-project.json` from your results diretcory
# and the whole frames directory. If you are using Google Drive for
# Desktop sync it now. The frames directory is pretty large and this
# step may take a long time.
#
# 3. Navigate to "Project" -> "Load" and select the
# `results-via-project.json` file. A "File Not Found" error message
# will appear. This means that VIA does not know where the images
# are.
#
# 4. Navigate to "Project" -> "Settings". Set the "Default Path" to the
# `frames` directory in your computer.
#
# %% [markdown] id="5kfdOPAfCpyx"
# ### 6.3 - Create video file with tracks (option 3)
#
# %% cellView="form" id="l44oU0LWA7nw"
#@markdown You may also generate a video file with the detections
#@markdown superimposed. The video file will be named `tracks.mp4`
#@markdown and saved in the `RESULTS_DIRECTORY` in your Google Drive.
make_video_with_tracks(
VIDEO_FILE, TRACKS_VIDEO_FPATH, FRAMES_DIR, RESULTS_CSV_FPATH
)
_logger.info('Video file with tracks created \'%s\'', TRACKS_VIDEO_FPATH)