forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_onnx_opset.py
338 lines (291 loc) · 13.5 KB
/
test_onnx_opset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from test_pytorch_common import TestCase, run_tests
import torch
import torch.onnx
from torch.nn import Module
import onnx
import io
from torch.onnx.symbolic_helper import _export_onnx_opset_version
from torch.onnx import ir_version, producer_name, producer_version
def check_onnx_opset_operator(model, ops, opset_version=_export_onnx_opset_version):
# check_onnx_components
assert model.ir_version == ir_version and \
model.producer_name == producer_name and \
model.producer_version == producer_version and \
model.opset_import[0].version == opset_version
# check the schema with the onnx checker
onnx.checker.check_model(model)
# check target type and attributes
graph = model.graph
# ops should contain an object for each node
# in graph.node, in the right order.
# At least the op_name should be specified,
# but the op's attributes can optionally be
# specified as well
assert len(ops) == len(graph.node)
for i in range(0, len(ops)):
assert graph.node[i].op_type == ops[i]['op_name']
if "attributes" in ops[i] :
attributes = ops[i]['attributes']
assert len(attributes) == len(graph.node[i].attribute)
for j in range(0, len(attributes)):
for attribute_field in attributes[j].keys():
assert attributes[j][attribute_field] == getattr(graph.node[i].attribute[j], attribute_field)
def check_onnx_opsets_operator(module, x, ops, opset_versions, training=torch.onnx.TrainingMode.EVAL, example_outputs=None):
for opset_version in opset_versions:
f = io.BytesIO()
torch.onnx.export(module, x, f,
opset_version=opset_version,
training=training,
example_outputs=example_outputs)
model = onnx.load(io.BytesIO(f.getvalue()))
check_onnx_opset_operator(model, ops[opset_version], opset_version)
class TestONNXOpset(TestCase):
def test_opset_fallback(self):
class MyModule(Module):
def forward(self, x):
return torch.isnan(x)
ops = [{"op_name" : "IsNaN"}]
ops = {9 : ops, 10 : ops}
x = torch.tensor([1.0, float('nan'), 2.0])
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
def test_topk(self):
class MyModule(Module):
def forward(self, x):
return torch.topk(x, 3)
ops_9 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2},
{"name": "k", "i": 3, "type": 2}]}]
ops_10 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
ops = {9: ops_9, 10: ops_10}
x = torch.arange(1., 6., requires_grad=True)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
# test with dynamic k
class MyModuleDynamic(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, input, k):
return torch.topk(input, k)
ops_10 = [{"op_name": "Constant", "attributes": [{"name": "value", "type": 4}]},
{"op_name": "Reshape"},
{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
ops = {10: ops_10}
x = torch.arange(1., 6., requires_grad=True)
k = torch.tensor(3)
module = MyModuleDynamic()
example_output = module(x, k)
check_onnx_opsets_operator(module, [x, k], ops,
opset_versions=[10],
example_outputs=example_output)
def test_maxpool(self):
module = torch.nn.MaxPool1d(2, stride=1)
ops_9 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops_10 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "ceil_mode", "i": 0, "type": 2},
{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(module, x, ops, opset_versions=[9, 10])
# add test with dilations
module = torch.nn.MaxPool1d(2, stride=1, dilation=2)
ops_10 = [{"op_name" : "MaxPool",
"attributes" :
[{"name": "ceil_mode", "i": 0, "type": 2},
{"name": "dilations", "ints": [2], "type": 7},
{"name": "kernel_shape", "ints": [2], "type": 7},
{"name": "pads", "ints": [0, 0], "type": 7},
{"name": "strides", "ints": [1], "type": 7}]}]
ops = {10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(module, x, ops, opset_versions=[10])
def test_upsample(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
size = [int(i) for i in size]
return torch.nn.functional.interpolate(x, size=size, mode='nearest')
module = MyModule()
ops8 = [{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3},
{"name": "scales", "floats": [1.0, 1.0, 2.0, 2.0], "type": 6}]}]
ops9 = [{"op_name" : "Constant"},
{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {8 : ops8, 9 : ops9}
x = torch.randn(2, 2, 2, 2)
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
def test_cast_constant(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
def forward(self, x):
return x - 1
module = MyModule()
ops_8 = [{"op_name" : "Constant"},
{"op_name" : "Cast", "attributes": [{"name": "to", "i": 7, "type": 2}]},
{"op_name" : "Sub"}]
ops_9 = [{"op_name" : "Constant"}, {"op_name" : "Sub"}]
ops = {8 : ops_8, 9 : ops_9}
x = torch.ones(5, 6, dtype=torch.long)
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
def test_slice(self):
class MyModule(Module):
def forward(self, x):
return x[0:1]
ops_9 = [{"op_name" : "Slice",
"attributes" :
[{"name": "axes", "ints": [0], "type": 7},
{"name": "ends", "ints": [1], "type": 7},
{"name": "starts", "ints": [0], "type": 7}]}]
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(3)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
class DynamicSliceModel(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x[1:x.size(0)]
ops_10 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather",
"attributes" : [{"name" : "axis", "i" : 0, "type" : 2}]},
{"op_name" : "Unsqueeze",
"attributes" : [{"name" : "axes", "i" : 0, "type" : 7}]},
{"op_name": "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {10 : ops_10}
module = DynamicSliceModel()
x = torch.rand(1, 2)
example_output = module(x)
check_onnx_opsets_operator(module, x, ops, opset_versions=[10], example_outputs=example_output)
def test_flip(self):
class MyModule(Module):
def forward(self, x):
return torch.flip(x, dims=[0])
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice",
"attributes" : []}]
ops = {10 : ops_10}
import numpy
x = torch.tensor(numpy.arange(6.0).reshape(2, 3))
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[10])
def test_dropout(self):
class MyModule(Module):
def __init__(self):
super(MyModule, self).__init__()
self.dropout = torch.nn.Dropout(0.5)
def forward(self, x):
return self.dropout(x)
x = torch.randn(1, 2, 3)
# we should only export the onnx Dropout op in training mode; test both modes
# test training mode
ops = [{"op_name" : "Dropout", "attributes" : [{"name" : "ratio", "f" : 0.5, "type" : 1}]}]
ops = {9 : ops, 10 : ops}
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.TRAINING)
# test eval mode
ops = []
ops = {9 : ops, 10 : ops}
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.EVAL)
def test_full(self):
class MyModule(Module):
def forward(self, x):
return torch.full((3, 4), x)
ops = [{"op_name" : "Constant"},
{"op_name" : "ConstantOfShape"},
{"op_name" : "Add"}]
ops = {9 : ops, 10 : ops}
x = torch.tensor(12.)
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
def test_interpolate(self):
class MyModel(torch.nn.Module):
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
return torch.nn.functional.interpolate(x,
size=size,
mode='nearest')
ops_9 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Concat"},
{"op_name" : "Constant"},
{"op_name" : "Cast"},
{"op_name" : "Shape"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Concat"},
{"op_name" : "Upsample",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops_10 = [{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Gather"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Constant"},
{"op_name" : "Mul"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Unsqueeze"},
{"op_name" : "Concat"},
{"op_name" : "Constant"},
{"op_name" : "Cast"},
{"op_name" : "Shape"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Constant"},
{"op_name" : "Slice"},
{"op_name" : "Cast"},
{"op_name" : "Div"},
{"op_name" : "Concat"},
{"op_name" : "Resize",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(1, 2, 3, 4, requires_grad=True)
check_onnx_opsets_operator(MyModel(), x, ops, opset_versions=[9, 10])
class MyDynamicModel(torch.nn.Module):
def forward(self, x):
size = [v * 2 for v in x.size()[2:]]
# work around for now: turn the dynamic sizes into constant
size = [int(i) for i in size]
return torch.nn.functional.interpolate(x,
size=size,
mode='nearest')
ops_9 = [{"op_name" : "Constant"},
{"op_name" : "Upsample",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops_10 = [{"op_name" : "Constant"},
{"op_name" : "Resize",
"attributes" :
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
ops = {9 : ops_9, 10 : ops_10}
x = torch.randn(20, 16, 50)
check_onnx_opsets_operator(MyDynamicModel(), x, ops, opset_versions=[9, 10])
if __name__ == '__main__':
run_tests()