Skip to content

Latest commit

 

History

History
28 lines (21 loc) · 988 Bytes

README.md

File metadata and controls

28 lines (21 loc) · 988 Bytes

llmeval_sum_factual

This repository contains code for the paper: Evaluating Factual Consistency of Summaries with Large Language Models.

Requirements

Environment

openai                             0.27.2
numpy                              1.21.5
pandas                             1.4.2
nltk                               3.6.6
tenacity                           8.0.1
summac                             0.0.3

Openai Key

You need to register an OPENAI API account and obtain an openai key.

Running

Below is an example to run vallina prompting method by ChatGPT on Xsum-Sota dataset. method can be choosen from: direct, 2shotdirect, cot, 2shotcot, sbs, 2shotsbs. model can be choosen from: gpt-3.5-turbo and gpt-4. data can be: xsum-sota, xsumfaith, summeval, frank, factcc.

python run.py --data="xsum-sota" --model="gpt-3.5-turbo" --method="direct" --key="YOUR_OPENAIKEY"