-
Notifications
You must be signed in to change notification settings - Fork 14
/
io38-tidylog.Rmd
executable file
·166 lines (114 loc) · 3.56 KB
/
io38-tidylog.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
title: "R Notebook"
output:
html_document:
df_print: paged
---
## Examples with tidylog
Install the package if not already installed,
then load libraries
```{r setup}
### devtools::install_github("elbersb/tidylog")
library("dplyr")
library("tidylog", warn.conflicts = FALSE)
library(tidyverse)
library(broom)
library(scales)
```
The tidylog package will give you feedback about basic dplyr operations.
It provides simple feedback for the most common functions, such as filter, mutate, select, full_join, and group_by.
Let's see an example with a pipe.
```{r pipe_example, warning=TRUE, collapse=TRUE}
summary <- mtcars %>%
select(mpg, cyl, hp, am) %>%
filter(mpg > 15) %>%
mutate(mpg_round = round(mpg)) %>%
group_by(cyl, mpg_round, am) %>%
tally() %>%
filter(n >= 1)
summary
```
Examples with filter and distinct
```{r filter_distinct}
a <- filter(mtcars, mpg > 20)
b <- filter(mtcars, mpg > 100)
c <- filter(mtcars, mpg > 0)
d <- filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
e <- distinct(mtcars)
```
Examples with mutate and transmute
```{r}
a <- mutate(mtcars, new_var = 1)
b <- mutate(mtcars, new_var = runif(n()))
c <- mutate(mtcars, new_var = NA)
d <- mutate_at(mtcars, vars(mpg, gear, drat), round)
e <- mutate(mtcars, am_factor = as.factor(am))
f <- mutate(mtcars, am = as.factor(am))
g <- mutate(mtcars, am = ifelse(am == 1, NA, am))
h <- mutate(mtcars, am = recode(am, `0` = "zero", `1` = NA_character_))
i <- transmute(mtcars, mpg = mpg * 2, gear = gear + 1, new_var = vs + am)
```
Examples with select
```{r select}
a <- select(mtcars, mpg, wt)
b <- select(mtcars, matches("a"))
c <- select_if(mtcars, is.character)
```
Examples with joins
```{r joins}
a <- left_join(band_members, band_instruments, by = "name")
b <- full_join(band_members, band_instruments, by = "name")
c <- anti_join(band_members, band_instruments, by = "name")
a
b
c
```
Examples with summarize
```{r}
a <- mtcars %>%
group_by(cyl, carb) %>%
summarize(total_weight = sum(wt))
a
b <- iris %>%
group_by(Species) %>%
summarize_if(is.numeric, list(min = min, max =max))
b
```
How to turn tidylogging off and back on when needed
```{r tidylog_off}
options("tidylog.display" = list()) # turn off
a <- filter(mtcars, mpg > 20)
a
```
Now back on
```{r tidylog_on}
options("tidylog.display" = NULL) # turn on
a <- filter(mtcars, mpg > 20)
```
Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing *Cmd+Option+I*.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the *Preview* button or press *Cmd+Shift+K* to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, *Preview* does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.
```{r chisq}
mtcars %>%
group_by(cyl) %>%
count(am) %>%
spread(am, n) %>%
column_to_rownames('cyl') %>%
chisq.test() %>%
tidy()
```
```{r ttest}
mt <- mtcars %>%
group_by(cyl) %>%
filter(cyl <7) %>%
t.test(mpg ~ cyl, data = .) %>%
tidy()
```
The p value for this t test is `r mt$p.value[1] %>% pvalue(accuracy = 0.0001, decimal.mark = ".", add_p = FALSE)`
```{r anova}
mtcars %>%
aov(mpg ~ cyl, data = .) %>%
tidy() ->
result
```
The result of the ANOVA test is F(`r result$df[1]`, `r result$df[2]`) = `r result$statistic[1] %>% round(2)`, with p `r result$p.value[1] %>% pvalue(., accuracy = 0.0001, decimal.mark = ".", add_p = FALSE)`