-
Notifications
You must be signed in to change notification settings - Fork 0
/
myPow.cpp
80 lines (63 loc) · 1.35 KB
/
myPow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
https://leetcode.com/explore/interview/card/top-interview-questions-medium/113/math/818/
Implement pow(x, n), which calculates x raised to the power n (xn).
Example 1:
Input: 2.00000, 10
Output: 1024.00000
Example 2:
Input: 2.10000, 3
Output: 9.26100
Example 3:
Input: 2.00000, -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25
Note:
-100.0 < x < 100.0
n is a 32-bit signed integer, within the range [−231, 231 − 1]
#recursion #implementation
*/
#include<iostream>
// Solution 1, Time Complexity : O(log(n)) / Space Complexity : O(log(n))
double fastPow(double x, int n) {
if (n == 0)
return 1.0;
double half = fastPow(x, n /2);
if (n % 2 == 0)
return half * half;
else
return half * half * x;
}
double myPow1(double x, int n) {
if (x == 0)
return 0;
if ( n < 0) {
x = 1 / x;
n = -n;
}
return fastPow(x,n);
}
// Solution 2, Time Complexity: O(log(n)) / Space Complexity: O(1)
double myPow2(double x, int n) {
if (x == 0) return 0;
if (n == 0) return 1;
if (n < 0) {
x = 1 / x;
n = -n;
}
double curr_value = x;
double result = 1;
for (int i = n; i > 0; i /= 2) {
if (i % 2 == 1) {
result = result * curr_value;
}
curr_value = curr_value * curr_value;
}
return result;
}
// test
int main() {
double x = 1.000001;
int n = 123456;
std::cout << myPow1(x, n) << std::endl;
std::cout << myPow2(x,n) << std::endl;
}