-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.nb
8382 lines (8226 loc) · 418 KB
/
README.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 427387, 8374]
NotebookOptionsPosition[ 419098, 8237]
NotebookOutlinePosition[ 419490, 8253]
CellTagsIndexPosition[ 419447, 8250]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
s-curve-beta: Efficient Python implementation of the smoothest S-curve robot \
motion planner ever\
\>", "Title",
CellChangeTimes->{{3.876426830130887*^9, 3.876426834237083*^9}, {
3.876466882776988*^9, 3.8764668843286457`*^9}, {3.876473017692429*^9,
3.876473018236402*^9}, {3.876474251178877*^9, 3.8764742627031307`*^9}, {
3.8764745066288433`*^9, 3.8764745094420853`*^9}, {3.876489604788558*^9,
3.8764896069870863`*^9}, {3.876493973235075*^9,
3.876493990454947*^9}},ExpressionUUID->"0365b06c-745a-4547-a2e4-\
ae4413524abb"],
Cell["\<\
1. It\[CloseCurlyQuote]s 2022 and you\[CloseCurlyQuote]re still using a \
trapezoid motion profile?
2. Your robot is vibrating like a vacuum machine?
3. Tired of the mess in the code because of the multiple piecewise time \
regions?
4. Want a simple single-formula smooth motion profile?\
\>", "Text",
CellChangeTimes->{
3.876489614029393*^9},ExpressionUUID->"d3756276-5e39-449e-bf97-\
36faf53bef22"],
Cell["If you answer \[OpenCurlyDoubleQuote]yes\[CloseCurlyDoubleQuote] to any \
of the above, read on.", "Text",
CellChangeTimes->{
3.8764896198631277`*^9},ExpressionUUID->"5cc7324f-6d37-4f25-be27-\
de7a93c069a2"],
Cell["\<\
Based on the answer of Cuye Waldman \
(https://math.stackexchange.com/a/2403818) I present this Python package to \
calculate the S-curve for the robot motion planning with a given maximum \
velocity and acceleration with a single formula.\
\>", "Text",
CellChangeTimes->{{3.8764742898774443`*^9, 3.876474322630554*^9}, {
3.8764743543183527`*^9, 3.876474368452612*^9},
3.876489626081716*^9},ExpressionUUID->"fd60b6bd-e8fe-42d6-9a08-\
2e051362802c"],
Cell["Here is the complete motion formula:", "Text",
CellChangeTimes->{{3.876489635359808*^9,
3.8764896394731693`*^9}},ExpressionUUID->"c29a99d2-4395-4873-a971-\
360dcefc7240"],
Cell[BoxData[{
RowBox[{
RowBox[{"f", "[",
RowBox[{"x_", ",", "p_"}], "]"}], ":=",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{
RowBox[{"RealSign", "[", "x", "]"}], "*",
FractionBox[
RowBox[{"Beta", "[",
RowBox[{
RowBox[{"x", "^", "2"}], ",",
RowBox[{"1", "/", "2"}], ",",
RowBox[{"p", "+", "1"}]}], "]"}],
RowBox[{"Beta", "[",
RowBox[{
RowBox[{"1", "/", "2"}], ",",
RowBox[{"p", "+", "1"}]}], "]"}]]}]}],
")"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"motionTime", "[",
RowBox[{"robotVmax_", ",", "robotAmax_", ",", "motionRange_"}], "]"}], ":=",
RowBox[{"Max", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"2", "*",
SuperscriptBox["3",
RowBox[{"3", "/", "4"}]], " "}],
SqrtBox["\[Pi]"]], "*",
SqrtBox[
FractionBox["motionRange", "robotAmax"]]}], ",",
FractionBox[
RowBox[{"32", " ", "motionRange"}],
RowBox[{"5", " ", "\[Pi]", " ", "robotVmax"}]]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"position", "[",
RowBox[{"t_", ",", "robotVmax_", ",", "robotAmax_", ",", "motionRange_"}],
"]"}], ":=",
RowBox[{"motionRange", "*",
RowBox[{"f", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"2", "t"}],
RowBox[{"motionTime", "[",
RowBox[{"robotVmax", ",", "robotAmax", ",", "motionRange"}], "]"}]],
"-", "1"}], ",", "2.5"}], "]"}]}]}]}], "Input",
CellChangeTimes->{{3.876466895958542*^9, 3.876466983147256*^9}, {
3.876467193853772*^9, 3.876467197420228*^9}, 3.8764676123520517`*^9, {
3.876489768165517*^9,
3.8764897718833857`*^9}},ExpressionUUID->"698b4204-04a7-43e1-9695-\
e4462e712941"],
Cell["Let\[CloseCurlyQuote]s make some plots.", "Text",
CellChangeTimes->{{3.876489770998453*^9,
3.876489779828198*^9}},ExpressionUUID->"a7fb1c76-0643-411a-8c39-\
a9a10c712b0a"],
Cell[BoxData[
RowBox[{
RowBox[{"generatePlot", "[",
RowBox[{"vmax_", ",", "amax_", ",", "range_", ",", "label_"}], "]"}], ":=",
RowBox[{"Block", "[",
RowBox[{
RowBox[{"{",
RowBox[{"tMax", ",", "text"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"tMax", "=",
RowBox[{"motionTime", "[",
RowBox[{"vmax", ",", "amax", ",", "range"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"text", "=",
RowBox[{"\"\<(t, \>\"", "~~",
RowBox[{"ToString", "[", "vmax", "]"}], "~~", "\"\<, \>\"", "~~",
RowBox[{"ToString", "[", "amax", "]"}], "~~", "\"\<, \>\"", "~~",
RowBox[{"ToString", "[", "range", "]"}], "~~", "\"\<)\>\""}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Text", "[", "label", "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"position", "[",
RowBox[{"x", ",", "vmax", ",", "amax", ",", "range"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "tMax"}], "}"}], ",",
RowBox[{"ImageSize", "->", "400"}], ",",
RowBox[{"AxesLabel", "->",
RowBox[{"{",
RowBox[{"\"\<t\>\"", ",", "\"\<\>\""}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Epilog", "->",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[",
RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}],
"\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], ",",
RowBox[{"PointSize", "[", "Large", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{"tMax", ",", "range"}], "}"}], "]"}], ",",
"\[IndentingNewLine]", "Black", ",", "\[IndentingNewLine]",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"\"\<motionTime = \>\"", "~~",
RowBox[{"ToString", "[",
RowBox[{"N", "[", "tMax", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"tMax", ",",
RowBox[{"range", "-", "0.05"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}]}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "@",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"position", "[",
RowBox[{"x", ",", "vmax", ",", "amax", ",", "range"}], "]"}],
",",
RowBox[{"{",
RowBox[{"x", ",", "i"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "tMax"}], "}"}], ",",
RowBox[{"ImageSize", "->", "400"}], ",",
RowBox[{"PlotStyle", "->",
RowBox[{"(",
RowBox[{
RowBox[{"ColorData", "[",
RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}],
"\[LeftDoubleBracket]",
RowBox[{"2", ";;"}], "\[RightDoubleBracket]"}], ")"}]}], ",",
RowBox[{"AxesLabel", "->",
RowBox[{"{",
RowBox[{"\"\<t\>\"", ",", "\"\<\>\""}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Epilog", "->",
RowBox[{"{",
RowBox[{"Dashed", ",",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[",
RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}],
"\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "amax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"\"\<maximum acceleration =\>\"", "~~",
RowBox[{"ToString", "[", "amax", "]"}]}], ",",
RowBox[{"{",
RowBox[{"0", ",", "amax"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ColorData", "[",
RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}],
"\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "vmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}]}], "]"}], ",",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"\"\<maximum velocity =\>\"", "~~",
RowBox[{"ToString", "[", "vmax", "]"}]}], ",",
RowBox[{"{",
RowBox[{"tMax", ",", "vmax"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}]}], "}"}]}]}], "\[IndentingNewLine]",
"]"}], ",", "\[IndentingNewLine]",
RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{
RowBox[{"ColorData", "[",
RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}],
"\[LeftDoubleBracket]",
RowBox[{";;", "4"}], "\[RightDoubleBracket]"}], ",",
RowBox[{
RowBox[{
RowBox[{"#", "~~", "text"}], "&"}], "/@",
RowBox[{"{",
RowBox[{
"\"\<position pos\>\"", ",", "\"\<velocity pos'\>\"", ",",
"\"\<acceleration pos''\>\"", ",", "\"\<jerk pos'''\>\""}],
"}"}]}]}], "]"}]}], "\[IndentingNewLine]", "}"}]}],
"\[IndentingNewLine]", "]"}]}]], "Input",
CellChangeTimes->{{3.876485641551496*^9, 3.876485693884836*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"2deca0c2-8aa2-41eb-8ea8-e03898a5215b"],
Cell["Here are 2 examples of motion planning with motionRange=2:", "Text",
CellChangeTimes->{{3.876489751831093*^9,
3.876489757460464*^9}},ExpressionUUID->"2bf13387-f57e-43f5-871b-\
fb917dd0dccb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Grid", "[",
RowBox[{"Transpose", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"generatePlot", "[",
RowBox[{
"3", ",", "10", ",", "2", ",",
"\"\<Example of motion where motionTime\\nis limited by max velocity\>\
\""}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"generatePlot", "[",
RowBox[{
"3", ",", "4", ",", "2", ",",
"\"\<Example of motion where motionTime\\nis limited by max \
acceleration\>\""}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.8764786215311937`*^9, 3.876478766948141*^9}, {
3.8764788016109133`*^9, 3.8764788468746367`*^9}, {3.8764815880150137`*^9,
3.8764816542460203`*^9}, {3.876484110714589*^9, 3.876484429126606*^9}, {
3.8764844644691257`*^9, 3.8764845472559977`*^9}, {3.876484610011456*^9,
3.87648463975775*^9}, {3.876484680066813*^9, 3.87648468759245*^9}, {
3.876484788713483*^9, 3.876484898846274*^9}, {3.876485019108128*^9,
3.876485056251244*^9}, {3.876485154852666*^9, 3.876485325384033*^9}, {
3.8764853967716703`*^9, 3.8764854012096167`*^9}, {3.8764854345244923`*^9,
3.8764854375138187`*^9}, {3.8764854691359777`*^9, 3.876485527916924*^9}, {
3.876485582283012*^9, 3.876485622602337*^9}, 3.876485671658914*^9, {
3.876485702408095*^9, 3.876485777619166*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"065b3396-6044-4133-97ea-dcc92ffb30ca"],
Cell[BoxData[
TagBox[GridBox[{
{
InterpretationBox[Cell[BoxData[
FormBox["\<\"Example of motion where motionTime\\nis limited by max \
velocity\"\>", TextForm]], "InlineText",ExpressionUUID->
"8813b1ca-4068-4bbd-8a07-260f32a7340b"],
Text["Example of motion where motionTime\nis limited by max velocity"]],
InterpretationBox[Cell[BoxData[
FormBox["\<\"Example of motion where motionTime\\nis limited by max \
acceleration\"\>", TextForm]], "InlineText",ExpressionUUID->
"f90356a5-64c0-4100-92eb-653df7ac6730"],
Text[
"Example of motion where motionTime\nis limited by max \
acceleration"]]},
{
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwt1Ak0VWsbB/BdmYdIRcotRKZIRDjaj0KIZChRqaNUKtc8C0ck7uU41yzi
ZArJrA4ZjsySeSYkc4VbplC+99z17bX22vu3/s/z7He971pb5Ka9ye3tGIZ1
o5vxvMCPfS97Z4lj/7+4q7oulxoQgPFOyis+xT1k2eljoP+fXxG+nTr3xebh
Bc+LDGuEy+/EuWdTeIgGVxlePJwuhts42xnTeKz+80qQMn7OiTNBw9OaYetv
htr4UcfMicbxuwxPGGma4NwO2nLGBg8YbtEStsTn7cbdB0rsGO7uXb+Nz7yu
GsvncWRYQanGHrdQJjO71joxfJBd0g1vLrkmrerpgkwqyGHxxQlKMhd+ybox
cvXvgwF4TvFP5+pxd4YzZWkhuNCJxrjHsZ4ME99eo+BhRTEVegbeyFR9Mb8o
/LfC7XHubT7IwroU03jcrlCRtbPEl2HLsrkkfHHfNn59JRLyWOVcdgqeaW4j
+YrHH3nxlJZpBk6Ma1PjmWMYE3N1z8YF+5XPO9Y+QqYQqoTz8E6BpBtdSQHI
5v4GRwvxvy4zOyl5BiLTdpvtKcHPxNoGxpo+Ru7nvn+ehm/0dsX8lA1CDr5B
Hn6LF/MTsq6yPWGshzxWX4XbmqW8rRhneCKsme0dLhbD3nqoIpgx33uDWIsP
9ziM+ceGIM+4F83X4+cvAfNZg7+RXRzzSlpwlugMgcwjoYx6WvBSG17ZzS3N
sS0MuTuGvawDd9vjqm47xLCNdHxCFy53cdiwtYSMXPj8HrUHn47UtJKnhCPf
PLnS1Ie33+tR1VOiMNZfUSk4iAdnqRu85PmHkZsIKozi1noOl4YfMiwXO/Z7
DNeYTb3OPcewlPKM1zj+U5LT0b42ApnwVxVtEu9txL2oxyORR7ulH07jhTZO
AR1JDK/OYBaz+P3MgWhFzyjkY9JqN7/hZ3W5k62nGJZz0KUs4KIzGpnRptGA
kW61//1tER+SyCxblY1BLgo+fvsHTmsYqpFMQMa2OxnQlvCouzwfLNhikRuu
+h9YwQ1euI2+HUcmtcls7v6JS+pkz3y9EIcs8Vw8ex1nmv747x8VDFvLyZts
4uVHtJlIsfHIH0m0gS1cNmO3lJZBApq3YUab3QExETdc0t4hkyLVhvczw2/f
l1VMqomAaazkFpuzQOtlTbM68WfIvyTLNthAWSv8uXgiMmm9JcCKA5Llh74+
5ksCjB6lRujhBAd254CzW8hYTVnB9E7oX65szXBNBoxKDwrW5AWNcY79rF+R
SUambft3QbClcf8tWyqy8FLtGB9YKM/aiVk8R/0iJ1tb+YF8NDzqYhQyNdmi
aFQA3okqlQW2MRwm4vVzH0jz+DNPaqcAJnw0+pLuAVif3peYrpCKcm7XFRlh
kBuprO75E1k+mKg5KAw3u62nmbOQSZQ7OWEi0EzPV7hzKA0wXkc2aabDkBCv
23SEKx312/IRFI5Ae/j8vJkOcr5GdhunBDAFRe158giZrrsm/0UCbJ3Gbkyv
IZP+cSt6KwXq+h4rLyYzAFucVpbPkAWH0weF+oVfoPk5Sin5cpB2svY02zVk
jV5CTPUx4BLjDbPpRKa8O5K/IQ8fN18clqrKBMymttn/iiLw/TivZ7GObGR9
gmVDEc7O/rALUcoCzMHgumTyCcjtgbLZl8j5PJ9cviuBb26fUXZcNmDBUgUe
9SpwiMjqK+OUA1hcwso/cgAriqeD7bOQaYPsT7YAWlm9I4rGkCdC74nd1wDf
vPkMwoVXgKlMbXuldRpGfve06R/NBWzNa4/1Lk143ckzGH4LOfQRV2KIJpAz
9Ca6niILbfGM79CCU4YVa1fZ8wBLY1HO+a0Fic/SRGynkCmT5+q4daBMZWFv
/858dB4sIz9jdCBDlOuAlzTy2JVUa1Fd8F3RFq+0Qh4OW10EPZBNKlU9245M
ciY5xehD6DfqTbNXBYCxjbbVXTECj76Ku2uNyEvm0mcKjcC6etD26QSyvLrZ
dk5jUI/e4z5yoBAw6dA75nRj+KIe/Pedv5AXG2+nqpnCuVD7Yre7RYDxNd1Z
sTcDZbfQ0n0ByBe9pyeGzUCUmFVZloRsthqgoX8Z1hU/N/7uQW784Kh31Byy
hsw+BmkVA8ZSPjK3ZQFsMjhLrEgJYJv53woXLOETT6lOrjqyEHMip9N1KFtS
DKm7jEwWVPqyfB0eVEpxLYUhf530E9tGhFbjvXzG68ic25Y/8VtBlMfXPzi7
XgOmrhq8YHML/rS8e0N0HtmmmWn69S04e2acqsr+BrA+jdwSZmtY5ew/bAPI
dVtuH9Ot4UpyjVTdS2Rhzvuei7dBpP6pkl8gDbAhNdHVPBtYz97rHpOMLD7t
sMx5DzrDKbRXZcgpAy9GbO5BoEUQYXgR+ZtBuZv4fZj56nha1bIUMKLW5mjW
A8jdrXf+h1IZYOlJAdljdqBmtWp9d/otYPFpO6+xOoOyxZpbM1M5kDqdcb9z
zqBg/DNYVhQ5X+i9JtkZpE5v5Py4Vg4Yvl2gWMAF9olsLfl1ovx3qrKOgius
jrE8jquoANIZXGAyyB2+97PGbgwiE28f8O52h/l2tqzra8gNLz9WinrAFJ3j
g5hiJZA+b+WZVHtAL3Xn3oJM5MQfHNUsXlBM5E9viqwCUrw0p3XRQ8g3F3hz
tADZ3H/8OJcP5BjtawpvrQJMMK2w9LYPmAiHrWQz0QEzHNJe3+8Lerzh+x2B
DqQ54r2LZD9QWYy4+auYDnSxzrq/DPxBIP/p973UarQfAx92pASC72G6S8ur
atDgYH+22hsIEzGTK4/eVgPJq6jpLNdjKPSR31jorQb6+4kHa+6PwVC/fkcz
9zvAyu1ECkyDIHDq3z2+3sgnRu3KhILhXyG9k1NmNUD69NpUZfVvMKfYlSZa
1wDdxdlRSiUUKndEEUydakCjcQP8PEMhdG4E6GEozxvhu/IrFCRpLrpPa2sA
k2nw72Ynw3VTqoWhQi1o2P45yH2AAu9DVr1fc9cBNSzc7YddBNSyEKcihOqA
dIhcohkfAeUBjUb2MnXoe5tG3TURkOMTLy6pVwdj2szn3whGAtmR0BYfiPrD
fx0OaYwEIws/UZ8NVG+8cemRQjT0SLI2ac7WA7WJYLWiEget6faKwmv1QHr4
b2H6gzioF+1/tsnSANRzccVPk+LgtVCWU4lYAwgrYLZmzPEQx6svJEFE7ug+
LNgbD1fWyPYcfQ3oRGpkFgITYLSBn7+jthGIgoRDS/uSwfBM7kGbrkYYc6ht
CjdNhvJybYmtT41AV8u75UxOhqcFLiqyW42QT4/yCtlOBbOEzishqk2gcXK+
bMiLCi125OTTuciVfg+uOD0H2l4WqcLYZlg0b09R9UkFCcqz43oZzSB/ZkBb
MjkVYjiU1MaKm4FyZ4blVHUqOG/d0t/Z2Qz0Y1FiA8xpIDdb/ed9rvdA8c6O
/khJg7Ryn0JR//fgoPCEKJ6bDpRby4TI+y1A3RPsfpAlE2x6Ck4d82gBeqCr
r4l0Jmjo2MH7xy3of7zLKsswExakp8/seN4ClErJ2arYTDD83q/n3NcCGkG6
xv/IZAGnf/llU60PIEyKqGmzyIagpADn3QdbQZgzT5yzIwe8B3a9jOxog7iS
1le2/AUwcXFX9KWxNljslQhdlSsAw3ZeP4GFNuC1uOMdp1MAlM9Pss6ztAP9
xNU0Ic8CuDkY5NNxuB08vv2slftYAKyNgeID19vRfuhc8MsqBKNUkutMdzs4
rPg6rpkUw2cLj72s1R1A9D745N7cGzCI5Hgy19ABlBzW6WQWGrxuSVz70NoB
5l/OPZ0TpUEwVA9FDaN6PQG2iqs0OCrOkSK61gFGJWzXzFpp4LKYIIcf6wQH
PoMcyzelwPSkSsf1WSdI2p9c7op7C0eKWbw+e3YB78BXnaX4KjhZ4ZK2W7oH
eEXF9JYVa8FjTbMP2+qFNL+ld5eLmqBXuFAurLgf5EsvxxP828Da25/cSx4E
vkMJZIEzXVAdKF/sTByGmIyOhhquPiB4+/7O4xuBiBialfOnQZhMlTXOmh2F
+m0uH7gujULf8KkJavsYiNhbVgaNfIIu0t6095WfYHN5TeUUcQKUN4fPUjPH
gSKEFR5bnAKJ+R/etY8+w6OpymSHO7Nw3JOgpGM/AeU34j1lhL9Ck1cnSdBg
Epr9f6d+KJqHIxoNgiZvJuGATMbFq8sL8D/1tfjt
"]], LineBox[CompressedData["
1:eJwl1Ak0Vlv/B3AapFKIUtJA41WphAzla0oyFC4qDTJmqN6S2y1FJA8aJSIy
ZEhJMiUVXRUa3jTc5JZUrjnE85xztiie8+7n/z9rnXXWZ+2z9vmd7/7tre7x
H0fvUVJSUs30ljwLji054/+wHX905zs7jhXia42Cx375Trxv32ljPiJCZIFK
bnJ3J6I3TrA/a8LCfMWm/fM+dKGwNuNUeiIH35hDai6PvqH62tFrWl8I1LZ+
d/2Q3A3HjxMy9Ef/QNej+Fn3BD0oV2oJ41cOwuzq6cBvHr1oCB7rEbNmCGO2
BOY9MfyON9OVNqus/IkvuTE+w/P70F2y3GnJwl+w3CcsPcn3QfuLTnPWwC/U
1kVFBfT2468JZy4UPRpGt8PqgTdeQvSsym439xtBznUNVdO3Qnxvy+t9PjgC
7bv3E1XeCVFa9jVq4q8RVNU4Tu2rF4I7ZpttMzKCxpYTCikfhFhYucX9qbQY
k2e1ypCvQlx20hDmTxDj0IUs9nqfEHlJ+uEr1MSwCp5fpyAngq76ylhVYzF6
bRaGNVuK8PeDodaTIWL4DLVcSbQSwfz865/rj4vRfC393kZrEexeDr0aHy7G
e+kZbIWdCDc9ZhfGnBTj4d2JPpedRFitHLYt+LQYsfNENo4eImjtuSCYc1mM
Vb8eqFSHiGB58MdfwSViBOc53M4tFWF/ZO2RE21iLLw3LSaiTAR74vp+aocY
755+8nArF6F4W82z3E4xlrZ7T1OpEGFpWsrhp91ifJ4THCJ4IkLcq3aZAaEY
JgmZNt5/i/BkkamOwogY48LYTg2hCE//iE81UuZReq78kVgkgm3onbLMqTx2
pYakNLJ0fs8LQbIqPMrvj9sU94PON1av+fUMHv5kZpk0L0JBQmDExjk8Xvlb
nGyexKDsK3ZM1OQR75wwN20Jg59bS+MExjz6zeduPLCMgcmlGe6V4GGtffOo
xXIG1criPsaEh7T8o4ZubQZPhubauJrz2Pes98xqQwZvXnYrqlrxsDKyGHpj
xWCU7FvznQ48fs1l3472YZDQUZUx7MHDRT6Ub9jNwDL+tJ2cF4/iEdlleX4M
Kriw56rePHwbZ0fb72XApA6v0NnNo/6itXFqEIOm+09ebgngUSCTmacXwSDw
uektv4M8PHrtI/wyGMRvN6m/dYJH3hEp+1mZDJL/1bsTHcGDkSlUe5vFIDqu
J8XjJI8Idfky/VwGrwy8jykJeGS71HWNK2CwaTD8kl8Mj86qDRuvPWDgu+1i
Yud5HnsSzGa0NjBYczVgltYVmr8G037pAwM15Qnp3dQjt68WWzcykFFM072W
yuPcCynb4s8Mmvn0LNV0Hrf5h6HhbQy8xvXGDl6l9fgZtc1haH185NyYXB5/
Guvc3j6Jherj4AypYjq+tFdfV55Fz9Gi5QXUe2ZmP56kyEJ+bU2lawn930Gl
hofKLObN0f5YWMrDtpgdnqvGYovp4ByHuzzmLiyxbtdkoXxsTKRHBY9nk7Q7
9lqxmDj36rG6Gh5mw9/+Y2nNYu44VcPttTwqu68OzbZlkTUQJtdNXfxUcdKb
TSz2d/czo57xuBIuWqW9mUVxpHnjby947CeF4QPeLMzmm5TYvuIx/fPyWccj
WGjONLna855HmL+cpX4ki/KChucuDTTPH137RAIWX1KeGDyiLpuSWeV5is73
uxxz8R8ezlbKXlYXWHDOLu9XfOQRVzKYp5jO4ozxxn6rJh4/Td6/e5HBoqzC
ruE6tfurouGITBaGDbsny37mseKb/8aBHBalYzyDqqlfz/4sasxn8XtJ1WLd
rzzkTj3Sz75Pv1f2q3LgXx5BKmnuOypY+OWIpGxbeHzKDj417SE9R31FaRnU
eX+taop+RPO5cL5vfSuPDSTn+N5nLILDG76fa+Mh2HWqVq+BxXBGxJC4g+6H
1b87PRex0OuuKQnooXlkkzdHWBbV1cQyn1pLMclOk7Bgo6Zt6qV27WmyPD3I
4uS2hCr/XtpP6T4GdjyL6NF/Grh/p/0vGzz7rRwHqcGICbr9PEL/UEsJn8yh
othfdy91QstDFW0FDuV15Es29eOK0YoXlTg0/+lbOEXIQ+3A2dHOqhyuLH+1
o4v69ceMrg+LOCjsWRNwjOHRYWnuHfMbh+T6C8/zqYdL2v81WMJhPLexsIl6
8TnNT8laHGxuBM4wYnmcMCut267LQVAfHsBQ6918WtxsxmGxaUuiDaH9N91/
+QULDtqDC2qDqD0j5fJNLTmsXpcqSKWOdXPIydzAIXZUctV36m6lT4le9hzy
E9jfYgZ4pB7rO9a1g0MWt21b/g9an/Xlsko3DsL+9S1vqbVmWAjj3DkU/3GW
HaCuunPZc603HScW5Rjk0dJnYR23h86fZ9r8X+pF7ikqa45y0JKfufX1EO3X
5ZYOiiEcWtUNW79Tl48IT3WEcsjYoTlG7ic935ItxbEnOFxbdXnSeuo970Rt
7TEcsq18nMqpi9ZZFZ9P4lAdNMYt+hftRyW2xyuZg6acWkkGtVlL6gLDKxx2
RrnnlVPXh7JJbekc1qhER3ZSD9xNO26Qy+GG/N3RpsM8jAUb7k2+waHFvVjg
Qh3lxDGteRysc34WB1BPF23wOVfAobY2ZEICtZEmsW29w8HwUfyLVuqTg+mC
8rsc9J1wa4D6Za111dl7HApTrTB+hMdOz4xV+pUceh8cDVpGHXbFRvVsNYdJ
KUH6gdQ1kzM79d5xUMna+Oo79c+jB6p662lejqz8rxHJfjK5nNnAwdb+4VRZ
Md3/T75aT27kcCd/yX516oOHZxW0N3P44KV8wIH6enuvIKWFw95nqW3bqb84
Vrg5tNE8AuXVfamtl21TrOzkcNF63I8QavWWpKD4Pg5vcX9RLrXLJl87ayEH
p7FDTCH1mYrVC6UYDkYJr0/fpx681PBPAOHQ9E/C4jrq1zbKRubDHFQPFs4W
Uo+516o0NEL/1+mjzyC14cKS3gKeQ1GOTrgUz+OalGOa6miC2fOfaylQh9w5
L82MJ8jdahayjLpYw60xdyJBPP/RR4e667xWyY5JBP66ixYZUTv513k9VyC4
aqWmZUW9ZM7EZxkq9H2Ffq9d1LvONGa4zCA4oFCq5EN9aejGEbmZBC2bE1MD
qEfVWy05PJtAO77N4hD1x2jBuU0LCN6Ji4Qx1JMHnHePXUQwJfdk1DlqC88F
Jg8WE8QWVY3EUReurRYtXEoQ1xd7KoW6I+/ii6ZlBJder8xMp1ab7pkVt5yA
CXBOyaKOYqSdxdoEiQb6OjepK9zeLivVIbAp4+sLqJmXGTL+egTy4a5bi6l3
5qL8vQGBm3n95HvUuttDZt4yIdB5LzasoT4Rs7Y5wYygbdSSLc+o35SNZIda
EFTd5F3+S71HMVTL3orgyeHtw2+o7xsbs/rWBPvGI/sdtewe8V11WwLP9tAV
DdTZtaGm7CaC8tN/DTZK6mGNZZocCGZOm6L3mdpEnX9R/TvBdA9v16/UTUeP
O13aTHB+To5rK7XmDcw4vpWgU7ZxdTv14Qb+8+5tBO1JGfQ45qG0Mmy3gRtB
9FQfm27J+uw0WarhTpAvyPq7h7rgtJRogifNL6V/3Xdq646w4CYfAg1tDbaf
OknJFDW+BIOCNVoiSd4m0mMK/AkeTq/bzEjySAk/e3wfwTT2+mFOksczU0ff
/TT/aLUDhHr2gLSKQyCBXaeL64Akn3mPPxkEEXxw69L5IcnH/kSGxiGC4Ftu
0oOSfELNvCceJvi7Z0OVxC43R2lyR+j4Oe3AIWrR2IiSmhCCxk3zi35SG68y
P1xwnKDynhF+UZ/ZNXptYjitf8K+xxI3nn0iHRZBsKJprdEw9eIHEbW+kQS7
OpbkSXyoy/y0QxRBXV+Z/Ah19dQx9oYxBB0Pt+2ReIp5tfK80zS/aQlVEu/a
f/LjxLMEXmmf5MSS/FIt0rhzBIUfcxwkHn4xxvNzLIGUiu95ia0HqxfVxhEY
74qvlThpQWRvQTxBkl/yD4k7HNcVJV4icD3eqcFT64SNPRSWRBAa2GEl8Ylb
NYZ+yQRfI3g/iV83RvIOVwgq7JIEEqvJWlYbphEcu6mULrG/rkzMvAwCk/S3
JRKXe9TayWUSTNVdXiOxTKxgCski0PIUvJPYqdLyn885dD07ln2VOLNb5kpt
LkGR2pEuiYUqT3fdvkHg9P5uv8TG66IWJN2k/a6uRyQ+E7i+O+wWge2MNUMS
N6aPu+13m+7X+EnDEi+ue3rQsYjAr/HbiMSHfkbpG5XQ9TGYyEs8xVn2sdxd
gmzn7v/zrdvRNl/u0/z+/zL5H0Ge0Zg=
"]]},
Annotation[#, "Charting`Private`Tag$6921#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\"t\"", HoldForm], TraditionalForm],
FormBox[
TagBox["\"\"", HoldForm], TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{
RGBColor[0.368417, 0.506779, 0.709798],
PointSize[Large],
PointBox[
NCache[{Rational[64, 15]/Pi, 2}, {1.3581221810508404`, 2}]],
GrayLevel[0],
InsetBox[
FormBox["\"motionTime = 1.35812\"", TraditionalForm],
NCache[{Rational[64, 15]/Pi, 1.95}, {1.3581221810508404`, 1.95}],
ImageScaled[{1, 1}]]},
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->400,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, Rational[64, 15]/Pi}, {0., 2.}}, {{
0, 1.3581221810508404`}, {0., 2.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwt1Hk4VV0XAPCbTCGkXiLVdaMMZUrIcBYZriQhIVLmz/SZh2hwlSkZbkKG
ihcJyXTJJSFkSua5TGXK8JK4KdO37/t853n2c87vWWuvs/b6YwvZuBvZM+Bw
uF606G/9BO0nfou2GO7/T9SXOewZ8RzQv0mFpao7r7dsfYlG//q18qIqdTFU
VNDFgm61WGlOjMob7mdNtKF7+dgLYSxe/uOg3JDDv6aFyWOeJlzKrC4udNst
6mth+n6Xn33edKd70kDDCPvr48cgU6IX3W2aeEuM8fOitDrZh+7e/j/22Moc
11fxIT+6Zc/Uu2Pjf2QeHyAE0H1kj6gf1s5mrLntfAuZVJzPfBerEvBbm6Hc
ocdVVobvY3niSdldm0F055yiPsD0Do+8GiEE02319hoZ0xBxCzEi3kNOvyAc
FI8pndq51uRyHxmvQ76cjMmeIZ9RIYfQbVk59xwTUxXiLC4NRR6vnsvLwPBa
JdMiQ2HIy6qal7MxvosaNSlb4fT6wr7+eRjnld4nXIQHyGTlGnwhxmRp7xGi
HYlsFqx3sgTbtKPp/HZ+iEzdb3KgDPvpGi7kFhuFPLjX+SIVm/M5+OcrJRo5
4kbMl7fYxO3cbtPBGHo/MeONNdhgiNKrts1Y5MnoVtY6zLFx6n06mUyvf2vD
qgGz1ZWU/Ex4hDzrT/mnETM3qmE2IMYh+3gWlrVhJv0s3pFDdJtRI1Y7MENz
g7EGl8fIvYl7KrswvdGkCztbdDuKJ6f2YDo2E+VnyfHIJX87pfdhmtNiwj6E
BGQbBVrLAAbOXuSCUroH31XzD2PyXrudjg0l0uNG/LJjmCztQp+lyxNkySfj
2+PYqcB49aQtusXkZwO/YsL3RAT2EpKRlSNrqFMYntktjFhK91iv+O0ZTDDy
zUqwdgryr1nc1e/Y/jjiR5pzKrKUuJLNIsbJS1aQ2aJb0kOHvISxpQxmusQ+
BRzJtvPh4jLGkOF0e5zyDJkSIWP/E9sWKZkV0H6O8hm89Kir2O/cP8ZXBulu
sgg+RMOWix+eat1MQ/kdEpv7f2M0gTm9e8R05BN/i+T9wVavcd5PI9NtJylt
tIktjZssDRH+Rh4hUYd2sOnZmSZ9Ygaqt2FC/b4bOsr32MQlIpMeK30RYAJq
mMRm3xSyGq2g1IwZIoXdpS1DMpG3RCs3WMH7J7k1vQeZ9KftvjUbXKsrsZsk
ZAGuNl5JuY8dpKxoSS7vkXH1lcUznHBQ6uDpQu4XgEuvDYvQ4AaG7bOfVm4g
kwwudwjsg97UO7sCt+nGrzaM88DNAUbnCOWXaL+QQns7L1hnH2dsi0ROT7tK
GeMDXV+d51zDdEcLBf4+CIL7o7oTb+YADn8y4YrOIajV36/8oiwXxff60iTw
kHv4TN8sYx7gpCOsNIbxELdg4n7SGJlEdsiPFgK7yJRMygoytyerOOMx2NMo
xFEnlY/2u/Ioyx6HlXiNbKYg5CK1vA72E/DF1l7tfDtyrc669PwJKNiV69Pp
+hrVe+RHeSsGRqrSI6O5BYBbnpGXzj4FyhxG/oTfyNz5ZzKKJEH4s/c+B51C
NM9+5cT3UkC7Wa61OI1MrjtetCENF82PDmw9KgKcY0NrsPlpqFOXzkqrQDaw
k2PeOA3yYuqe6hPIHnrXRdPkAL9uwx4qXYz645rwWTkDKwnZwNGBHCFWfLNR
ERK7TuUIcFAAl5RKeyQJUJX5XVBQBpk6vCd8B+Cb74tHh02QJ6OchJ3VQFrg
8C18OrLi9K7XmurQasOhf1yuFHDrgQfs9mnAslxz3YmryFH3OJ4+0AA+lhAF
sbvIgjtcX3drgt2rDfzJZuQsZvn8bU3Y+Tn3U+ZaGTrflO6HvUQ43pjteDoY
WZp59HciEfSSbEbkspHHzTPtCDqQojLcqLCM/CX61zKcB7nQlmTVkDdovt4k
r8QL4MibA+fzywHHOtbxwdwAYmZtS3W7kFfNxM+VGEBZ5VExPRqytIoJA7sh
MNx4wnNJjQo48SgHs1pDePoybMq4F3m52T5T6TJ0Kto/tNqsABxPiwPN3QRo
bEI4G6FKwBnfmpn8YgKHR7742Gojm/y6r3bBFJyDja87kJGbP3meP2kGjK0a
Mq7CbwHHXDU6t3MVzloQBvz1qgC3WbRYsmQJRtZ//Go8kAWZnrJ7XQfX/3Tz
siQgx/CfmV+7Dune90wSR5AXpoKEd1kBa9TXvlK3d4Bj37U2wWsN/VUZvT/I
1YBTORux5GgLy3WBPmfLkB1bGWfe2AJbi9GB4CHkAbWCMiY7UO1jMOYm1ADu
w47fyAs7yFq06ZGkIOPZnQOW7eFs7L7vZc61gPusRPhV6AjacVvUodvIIjMe
a+xOYJTwPWIrBjlj6OWooxO4pr4X1aIgL+pV+Yk4Q/pLT8feDWQrzc2xXBdg
qe2aWYl6D7gXz+/njbtB3/KjaanCOsAlZ3FeY/EGQdM7l0bq6oDU7Y0F6XqD
3TtHamQ/cpHgR40Yb1h9AJFTWygfY+Ar5fMBnmOLp1L16oG0nSlPlPUFgys6
vsxzyOcwvqkwf0h6e3qUsoVsZX/oVq8/jAsdJVrvawBS06uRasJNcP9n7WCV
IvK3nUKj9zchJjyzyjMc+elPtvfMgdBWsb17RPgD6k+c3Y5yGw7g51wjFT8A
ySz4qwzHHbgW1tenoIfi/FklFfZ3YN4o/2WcN7L+Z60/AneBbeHqBZ06lD9n
5WQcEwTEI2VxlBuNUCvc/SFSLxjq7rkIRaY0oXkMfdqdEQK2109en8lvAjW2
Pc9+9YcAo9JiimZNE5ACKS3aHKGg9cPtwM63Jqj9OOmy7h8KzTe8WHxONQOu
yk2o+HIYfFIJWLSsRZYbc6sUjIBBWliFzHQLkCbeXFb89RACuom0mPUWqPXx
9hRTjAKBAtbTC2ytoNa8AUEBUWBhH5mfLdUKtYWjPOZbUTDaE512KKAVcBJN
wb17YmCyKD6UieMjqLn+d3jvITIsOWcYDsm0ASk61u+nWxy05tqcqNVqA6uj
MWUayXGQPUvYyr7ahv63adBbHwfXHTJzfILbYFyL6WI5/2Nos87a4epqg/TY
rWMPmh9Djln2a22PT5BuuHHlnmwCWGnn7SktaIf0FmVrmmISqIQ6j6XUtQPp
9o+SFy5JwNcgXhbcj+K6SaUpz5OgXf2V1aXtdsDL4lxNmJJBRTW/fO5iB+C7
eo/x9yfDQbkCe6HFDqiFeomlkFSY5R6yakroBDV+5aOrB9PQfUwyiUrrhFqP
hpbYy2nwzumEnmEuslKhrXdMGsTV+Sp8ruqEotr4wAcM6aDiw8O59K0TpBX+
qfwcmA6PBi685ZXtArXqIBdzr79B6Xn1Xw7tXTBu1plx9k4mZLXas0sMdoH0
uSEt0bRM4PrFsWt5ogtIDrPMqu8zYfKSxULAWhcUScULDzFlQeyu9bpowW4g
38pLGCFnwaSdjEeZczdYyYZbiRS8gGiJrFZGlh4gH4jwP8KcA1k88nlC3D1Q
FOJ710g8B6p+Nz3A+HvQfbzPOlc/B+aa5nVuSvQAqVr0e82THNC2O900f6kH
1MJ0DB9J5ML207r67qQe4CbF1XdczQN3zomqdPFewLMXirB35YPhj8OFKvp9
QC5rf+3KWwzMkVIWR8z6YLb/RNQvyWKoJKiz4Gz6gPWqw60kYjEQjO1u1Pv2
Qa2cRZZgQDGsvsnj0n3WBzcXfzdIjhRD0m0FD9OFPhA9R7wUlFsC4yyGMl6R
/eBBu+u5blQK7kdCKC8bB8Ds1pFwp7ly6PQknZ/oGABSPstMGjMVpD/cHhMY
GgCDed2UOQIVVlx82WPmkc/zsb6zoIJfhYOtD/cgKJaxXjNpp8Jd4/P71c0H
wYNHL9+yvAJiIjm9hxcHQdRdYa0n6S28piXJ7v1rGFiHFoiryTVwhNPTts/0
C3AThM+vnW6A+agzpZ0fRyE+aLXOlNICLha98C1yHIQrTJOVgzuASzikzL95
AriPpsbwnesBvai/QlRx34Cc3dVUzzEA/LrbsbhjkxCZSLX2nhiGeOURCcvr
U9C4y+cTx5UxSLu3n6k8ZBoE3S2rw0YnwHQL3PLqZ2B9bV1R1WoScvj0pTs2
ZyFKEFcitTwND8IpUj/wcxA0XZ3m4fAdDkpw1eRbzkPFjeQACfwCKAjXPbQP
XYBPwduZnyj/QGoQr9vmgUU4JJFtbLG2BP8DeyX3Bw==
"]], LineBox[CompressedData["
1:eJwl1Qk0Vlv/B3CRlyRUKJIit0mhkhLXNykpURFCJSqFbq+QIooMoUSlVMaK
clFX5iRXJSISGeLKlHDNhWc653nOfz//96x11lmftc9ae/++e1Jz+a/VCVER
EZFu8gq/PaN7mADVUZwbyraxEp+ATWSP65eeMbT+OGJuwv+J9OaeNZliE7hu
KbUveuskfEUszxQ9mkBeZWpUSvwU5KnVh74Z/UTFk4tPtDqn4Z+aNxj8+Sfs
2qRSN4uxUeS06XfvM79QMr83iFnHQWm1q873GZNo9xd3iTTk4oaYxGePW5No
WjjfbsE6HvTsHm0y1p7CWJ72Ac3lFJ7Y/Pv7nTdT0O3U7X7MojD6h6a03tFp
VEhdv/niDQ1aR8nPZmoaExvSfpi48fH13flb0WEs/OzLHKnm8HFtNT9dLIKF
4sKuq7MpPoxuXnnpF8UCJ2BPmjmfj8dHortPxLCw+vVB56oZApzhPtIyus9C
0gH1iWwpAWZqf6oZy2Yh597mYB0VAdY90BDb18SCvtq6WGUjAaI8G7znLWOj
+RX3e2igAINhDcFHfmPDNKaet/OyAKYJDTGZK9iwquV+mhUsgGhlQ9a2NWw8
d1HNiQwVwG9R43evjWxskQ9y9L8mwKnKRusvO9nQOX0zfMl9AXaqNG2IO82G
mTf7b/88Mp4PLZMKhWx4hVX6XekToLqapXu7mA3raYdmhX4BbnxU9JV7xUa+
4/sPTwcEUKq35UiVs6GVnHChakgArZYWmqlm4+6nH/9hTQhwsK9FfOgbG1Ur
jHXl+AJki7QuKBPnoOZcXJKBPIOzouyDBpIcWF4qKHykwEBv5oIHxVIcFBy7
6SO5gMEbCTuVPFkO7orrddcrMWiRaV2aocRBzh2vEMslDEQWt666tZaD4i4c
nr2agY1+q4GrDQd8+/xb4UYMHAQZXa12HGy7q+T8GgyOvPMP2eXAwQd5wdiv
rQxcLVQ/rnHioJK71NzBhMEF5xMOk6c4+FI7NFfZjEFi5OSFoAAOZko2mBzZ
z6CvTbbwwWMO7vWXp9IuDAaTe+yln3BgFnfNQvo4g9FjefzADA7KpoKqlU8w
YI3a7nB+xsFUEq2je5KBpGhy04oiDrpL3tUe9GCwZvWayfwaDnyrjZ+5eTPw
9jfTqf9J6j20tenZFQbqY3GfFKc4SOzRK4gIYdDo3HP6CIuD67eGE1xCGazf
5f/nKI+DBv0TAfPDGUwsyFaXnsmFFSf4rlskg9MFsgq7FLlwd7wdPxBD6p1o
4b7dwgUeeizWSmSgeHzZPanfuVCVl0oZIn7f+l89K3Axa27yxidJDDT+lvTu
MeGih0l5rJzC4Hv0lhFmDxeuEiOxnIcMjmomdxo6cZHIhC2NfMrA3vXEu8IQ
LlTe+qeK5DLwrGyI0w7nYuTiC+3nxOHLjVwzIriY+/v71w55DPL7FWc9iOZC
Y8n6tpx8BnInP1gGxnNhb8xZsr+IwYeTmu0mWVwoBMwMcyllsMnt58TnRi6k
lz4MqHvPwLL68NtdzVyoSyhvOVTJ4PiqmttvW7lIYwVJDxHf+veRXn4HF15D
479EPzAYczsQEN/PRX6YSfuqGgZP3IskjvC42K6xNW/PJwYKpwNVh9V40Fy0
9eFwM4Ov/seH9DV4KHneUm3bwuBBpHlhxHIeuhLe6b8hVn2qZLlck4d8a+lf
t1sZLO8tCHTW5YFlY9us00bW88GxjlZTHq4bWY6bdTDguDZnLN/FQ1GpRUsG
ccm5Up9z5jwYtJyUkfzGwOh2lPT8fTwUzjzmU0Fs+mm5oaU9Dwfyyldu7GJg
t90pocKDh9xC6jWrh4GytenJ+Wd4cE//KbKnl0GH89oNLp48bD/1MzmV+Ohl
qobx4UHtZszYzu8MTpXE87Zc4iEguGX0Rh9Z7zqf7V/E8iBIDeEK+hncVzFe
mFxAzsmh93kew6TesTbTniIe3ldMm2YTJ5Z7ndMo4WHqquLeEeLk42mNmWU8
hDreKXcfYZCWLRFdVMVDlNh5fedRBs8NP81oaONBlBMitXGcwV8yJ3XkO3go
y3Xf+AdxTjdzxK6Th5d1051pxHmh60q/9fLQff5UzrwJBsW1cb5Dwzwkan86
PEj89pDjsJiAB7nThh4Bvxi805pS2ilCIaHpZnU2cYVItFmUKAWpKcucDuKq
tLJ0OQkKe/70UjKYZFA7onZ0sRyF8KZgj1/ELQGDTXrqFFYa98abTzNotQwW
89egsIHzW6UP8delyutfk3ti846k8CTifyrMY0w0KdwUfVA+Stwt/deufboU
nt2ZXBXJYjCUeK7MzZRC2pSjYzabgZWj1tJOMwoT4zt7G4hfKQ0EW5lTyDsX
Pckivn734A6DfaR9ensxOAy0Yw1qpR0oxGYad38k9gmZ0f7XHxS0ZBfZ13PJ
/BqXGGh4UuhT2/J9lHiHiHfSPS8KDw+vninNI/s5sO9o8Hlyr224P2cn8Uvf
qgGrYDIeM9cDxcQCt+jp6TgKFT4znSIoch6sNLVzj6ewWlolL5W4vl9Q3Hmf
wpGrzpnFxKnHPAOqkikYLogIGyA2OWwtdj+DQqZskZgxzSB7kfSJOVkUep1z
w22J5dsrKoOfUdidzsv1IO631Ytyz6VQWRkodYc4Yp/SXMNSCgZv4mq+E0/I
NHrllJF8D+AZi9i+LqpJ4w2FnCQzzOIzWL2bjp9TSWHk1UWftcR1Jl2qXfUU
ZBJ8NnsRz9uUvubKdwoLH1t+GiVenvY1ovYHyctqUpYi3jJX+ofiIJn/fWUK
kgIGzsNeSVkjFAqyNT3ViHNStso0T1P4elz+7H7iCmkf9yUcCn98SOo7RPzV
72mlG4/k4SWrdoqYsZa5LBBQuL1bgh1IbCnZMb5CkkYjSlY8JXY5J7vHS4rG
AXHurxxi395tGaXSNAzv1F8rIU4q/fPo/rk0OlrvrKwjHvE83+CvTEPZO0d1
glikM3PtexUaIwfaXDnE8uadkbJLaLxI1w0WYRgY/LZjW9oyGqoa1VpyxFFt
8/Lq1tB4ar8tcC1xsqmp7EJtGnFMm6sucW6en4fLOhruG1esMCBui+5ext5I
45GZipYZ8cptz+OWgvwvN378KLHhXz0T7sY0zsrlz3cl3qeiYFFgQqPXLj7J
g/g866L4bjMa6+P6tvsSV2bu8vXeT+OL4MVEJHH7gsDG19Y05j0NvXqDeCw0
R0vSlkbsi3L+LWIFpwUDiQ40bo3FRiUI+6/dbTJwiMbd+nWPUoT9619KWedE
45eHTcJj4uPzf9hVHqMRr79ZN4v4QtDCfDlXGuaFTNNz4uuj5nKOp2jIBjvY
5xLnVeV+GD9Nw8mkSeYlsWhAkL6SLw3dZsGW98QirhZVTy/Q6BPVPPiBWLBX
2UbvIo3yLMb2IzF3Wb6ndRCNdxcO0Z+JWXOCBT1XaJyZhbQvxFNsi+ueYTSO
/bik00I88XHgaXQUjeJrf3PahfUW5G9UiaaxSHGe3jfikZTgd5kxNBa6nHDo
Ih7wXtRVFUcjZkm6w3fivsODp23jaQxItm/6Qdy7s4DXd5/Gj3up5Dhm0Llo
r6JoCo0IBVfzIeIOcZW02Ic0ssMfNw4L8x4fXLckjeSXML5jlLj53RULwz9p
qK9Xnxwnbny295+aLBqccEOtn8Sf41Xc7J/TKFtYZ/eLuNajMNQ3j4biZMaF
KeIam5B54oUk/wiVs9PEVdiXeruYhsWArQOLuGLVYi31VzS+Og3qsonfzh96
lfOahv8zpxkc4nJ+4S6Uk/0wvKtc6LKBkNa6t6T9xnovLvHLV4snh6potO/V
eMEjLkwfCvKrofH6pQEo4vyYIhnJOjJ+qTNvhc71C028W09Dp+N3A5o459j+
1b810jjar5kp9HML1eK8Jhp1Y4WyfOKsTcM7trXS6C9zPC10hlrxl89tJD/F
O+VCP5kd5uzUQeN48j/SAuK06f3jo500ctrS9wv9qEs1MKCHhsiCUzFCp1YP
S83uo2F0NK5S6KS84nv3+2ncc3vAFvpBUtjylf/ScLg8oM4Q37tqlV84TOOS
V7+Z0HfPLtm2Y4xGVwjjJnSc40j9lwkapRb3woW+tePlYZdJGgFZ81OEjtUO
H56YprE1pSFP6BtK1n6XOTQUNmq/F/qa2FIJGYqG1rHwL0JHjI7EJfLJfPav
7RI6vPWluqYIHy9U/AaFDn0TnvNSlI8DzUXjQl/JsjYyE+ejXE1vWuigO0tr
WyT42KNkyBX60uVR+xNSfMTGzaGFDnArGZiU5sOt/V++0H7WV89dkeVDXX82
I7TPCrWbKfJ8pNkM/b89qZLsUiU+RP73bP0/0lrYOg==
"]]},
Annotation[#, "Charting`Private`Tag$7039#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\"t\"", HoldForm], TraditionalForm],
FormBox[
TagBox["\"\"", HoldForm], TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Epilog->{
RGBColor[0.368417, 0.506779, 0.709798],
PointSize[Large],
PointBox[
NCache[{3^Rational[3, 4] (2/Pi)^Rational[1, 2], 2}, {
1.818783486985395, 2}]],
GrayLevel[0],
InsetBox[
FormBox["\"motionTime = 1.81878\"", TraditionalForm],
NCache[{3^Rational[3, 4] (2/Pi)^Rational[1, 2], 1.95}, {
1.818783486985395, 1.95}],
ImageScaled[{1, 1}]]},
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->400,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->
NCache[{{0, 3^Rational[3, 4] (2/Pi)^Rational[1, 2]}, {0., 2.}}, {{
0, 1.818783486985395}, {0., 2.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]},
{
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV0nk0lXsXB3AV5ymRQobSQKVMXQ2UDN+fhEhJGYsQlVxDpCJlzlWZ5dCE
CiFkLHMRleqauoaicM55TCGlhMR73j/22uuz1l57r73Xlj7ufujEfB4eHjY3
/p+NxXi+l9XYaG2ReufvanFEQ/DZe4tSI3W87Ox2P6t6RUuw06blstE+dD2V
3mc4laNl+MXpkrGPKcxv3p8Svl+rJTh4X8jO6Chk55t3Gci1ajmddTMpEbJH
rdSqahlvlpah5+LbxMcRxgGLXJlSI1qKHhmc16xTKLaWjRM4/lNL8IzuZhOj
v7GqXmvvtdY/WqNurAsfit2QPjj89Oh8Xgw8edaTJ+SB9IPOOW28/LBSjeQ7
V+sJ87mN9Zr+S/Gm2FpezccLXtVajz0vi0JdRcH4j9J5rE1mHYiYL4nsoqmz
1awL6HsYf7VRZDWktr9OvJLggwPKR4LWdkojopBZaWDki3kD98KO/FqP2a0n
WILzLoPTFtrQb7cJbgXbqJZiP2xfJ5PPu0IRYxLzxPapBEA/U7PbRVgZGZZO
m3KEAhF+aiqlSnsr7BIbdwkNBWKvRvuB6dvbIdmhut+jNgiTR4cqVsjswDUL
Pk8VnxDYL1k82lSsgd0JLiEJh6+geSl1Xq0O+N32njmlFArePauvigVpw8X8
fnkl6x9s+GmRJ8Cvi/XMRQ1rKsMQuXnK7Oi4Hrpaz/QEJlxFU0DbcdGJvdhv
Bj49o+twjXAqNTbYD0Z8uniGbDjcbO9cj7lljKr/BOX550XgwkuD4GMLTLDZ
tOtAQ3Ekvg8ZfbuTeBj9cTr2ytFROC5aHL5q0hRNp1vVDFSisXTOkFNzwhxh
mRpGj4RiEO33RVHGxQqOBmfMui7F4GVD5iElvqMggw+OCQ7FQHnk46O5bGtM
bVrs4V4bi+fDayXeiNrBOeND/DafG+Cf9e7UG3GA3l7BZMe+G6D6/Tx/TDhC
ZoBkxB+OR36r3u6EhSfRuTGj7JcSE6l9F8PndJxg9PB8dzkrAV9dpiLWrnLF
Jv2sgWHjRIQu+10KJzfw9n/6tqoyEcafJjTfl7ujQlaXNyDhJnp0JUUNtDyg
lC4it8foNpi6yV5zW73AjLX1Sq25DWFTp4GtAucw6/foGa/aHVgc/F2cMnQO
DRY65nUb7iLkRcsFo6cXcGbR2WC9uSSceVj0ozbaFx0/qxrSzyVjY3p9RPaN
SyAs/hXUcDL4C9vsBJMuI8zGpMPBJQU3u3vaLar9uf876Lbe6h5e8zl8dt4Q
hEjFqBumN+7h1sT71vTKINTIqJSFNN5DUvHg2nLLYMgLBfLRuvdhuPJklE9C
CKb7Je6kbX0AmeXWMmk7/sHtm3vrZQXSsGhnzg9Dvgg0RY2OmuunoXDYYe+5
dxHgDb0h+k9QGkZjF4qmMyPh4tlj2z+ZhpCzSdHCK6Khsc974iGdDtyLyxit
j8GnmYfr5J5lQCEoKVLKKx7C4/sNrKYzYJm15rznWDz0BsfdrqpkIrTodKKN
GxO5rSgbfJSJN5ctvX65JcAvt/1gVmIWGoW/TB0Ovok1dpSfgmc2Li3QWnxh
6i4mtmmHuWdm48zjgLORV5LQQPnGFvZkIzu6aruISDL8Ho+mqxvnIN5gT8I2
yRR8nm1t3KeYi7z1MwXrte/hzt1UaZe+x3Askf9ZUvgAZTu/Lu9YkoeFluXK
JnypSJcRWHlRPg/V727bp1qkwm9Cd0OVfR40cteFX5pNhVJSqZpeUx6Ux4bX
TZumI3wk5bh5Tj4Gbwo0WGzIhHd75anJ1/nw0zlwsiQoE47VH11ucfJh6Kq3
or0nExrxohc+ryyAyP7ui8bJWfiiEXb95LUCrBwtcVPekA3DcPei86cKIcWk
glpMH2OhghYjQboYEd+HLbfIFKJXqFQ/V6MYL/XcecuPFqLsx7ardRbF6Ni+
uPBefCH+rpIT+BFRjOzdTVtD+YvQYLJc2GS6GJ0ullbZk0W44T28avH7J4gd
M1/g0fcE0i9vqfiHlGBOz0F1gCrHdNbyC8zkEojuiF0ksb8cLVHRJTllJRCf
qeRLiy1HiFWoetdYCdKPlzu1ra7AwLCHtppNKY4vaDBnqlciV8Rg/7hKGW5o
JzReCX2GXfa/HE/1l0OiU/TQhHINVK0mz7/hrYCajEvBa+sabDWZClOSqcBq
uae6zWE1kNP+nT1uXYHNUe2ckN4aSEjP/fBvqYDEuiLJc/Ev8KuHcSWxshKV
LxjeHlQdiuzE0urjnoHZrB8bK/Ia4nm3vi9PqYZsXXvQs/oG+K177vUupxp6
HrGBE7MN4DDpiaDyahhq1o1ZbW9EwWXl31/bqjGwRHcwLbkRB/a9XPBGsAaH
s81sNmk0IaTvm6ifbw32vYt79F2iGd+kDHb0mb/AlH7g1yZWC95e/eX7RLAO
T3Z3Sn8rbkP3KzGx5trXMLvylo6hehDt8FM9zvkdSjgmu19p0vD9sOxRXHMj
+NMGbg5EDYFt5b2cqm5G4rcOkXnWY5AtYlxk+7xHoqtRlZL1OHZUeqWKyLdi
cMhO3/bYBLwnddp55tqgPHTwrFP6FNrWFmyOKOrA6v1pcS+yZ+DoGxjZFvkR
bwbE16zpnEN1iHLRWbsufF4ZzZN0eh5R9/WbfSz8GRl1gfxZRfMJ/UDJJHOw
G1ef95k7ziwg7V2anJSmHnwJcmkSEeAjJ9U1o6z+68HFgPHdx5bykYmbGruE
O3qQetdgOk2Uj4hZqEcHd/dgq+DTrUqr+Ih5806Nk6M9YPQvyVqxmY+01W27
oSDQC4VxqfwzxnykNVduzxP9Xsh/bdWaF81H3gcsT31b1YsPIxKzFxYyyPOk
lAnPml7Uduocnl7MILkVCgYrXvYiPzWp1keIQa5Nao86/dsL1adk0l2MQcgZ
t52Mrl4cKRq5qraeQbJtX70jU73wO6IeRcAgIVo+P4u3seA8PiwocZZBPK15
99rsYGF+oLiKxnkGsb0YdYtXnYXShE/WNj4MsutJGg7vZiHMby6L6c8gY0ot
V8cOsmC+ZZUCfZ1BbFYprFZwY6FS3H/RtwcMojrTpZeSwYLMlFN3VTODzFrk
ty/MZoFpGqB76D8GeVl4xcnjMQshu2KmWW0MYvb35mu7n7Aw3HvIeKaTQbw+
+v/LecECr4ht3JI+BikokTGV62ZhV8g3Kn+KQTafc7IvWM6GjqJ32+Bqikw0
aXxfIclG2H1LfllpilQpLgsOlmLjgtgfX9t1FNnPKU01XceGk3682JuNFHE5
vHhgQpkNEX3NlX7KFMnakuumbsQG5WkyYadNkY2j4761QWxobR4qXGJPEVOB
D6HnQ9nIrd2uvcKBIgHyVTGbrrGxoZHHX+YERTpOhj0Mj2GDp3pmkdxpioR1
S703TWGDb7T5wBIPigw16crTlWwsStojrRZAEbGv8ioJ1WwseZjlLRREkd2C
S4lBHRsm7ue9WcEUuWXw0SznHXfeLgt3v38osq/GLfBcJxsxu8SVIiMpkl2Y
0ME3xcZOcd0ggTvc+c2X2E9n2CjVyN6Uc5civGP2o6d5OGhi4YxhMkWsFRV5
GygO2j00ey/ep4hg2vO/mGIcDD+e1CrMoIgbczBUdjsHFWNxUYFFFNnio66i
785Bh7oRHVNPkZ2tp/3KPDlY2bjwbv4bimhtSXyldJ4Dx4O2RxreUsRw8IeV
6GUOVF60c2b/pYijVa5f7zUO1okKbNVooUiCmvRr33QOTD//7b3xI0WS4o2X
fc3koK9q0EW8kyKp3y4fOZ7Dgb6CvgNvF0XyMj8O7y3iYP5wvWnrJ4q8kbyx
TKyGA19ZVd3DvRT5M8U4mveJg030GuVn/dx9zVVS1/VyYOnaJu8/QBH+AocR
JoeD3rd26zUGufd2fu5/+QsHsvx6IjlDFFH+6JNqOMVB2bu3nc4jFFFVzRip
nOEg3j/+tfAoRTRj21S38NCIbBgteMq1oeG2enGKhvr6cv/JrxRxKBse4YjS
0Nb896fZd4o4i63cYSlBY0u89Fua6zOeBgFvV9LwWjVyx3OcIpfk04ULZGiY
hTurBP+gCPOW7Q5/ZRrO3VmqARMUuTMREfB9Gw3bIdvhX1w/OFRRf2IHjb9i
ku+6/OLeg1/S2kiLRrGr2XejSYrUX2wJkDTi1vf12A9OUUSRGe7ha0yjfFZV
Qn+aItH5esc/HaLhr366/x7XlgNlOvesaBwKE2k68JsiFQvObV9gQ2Ok58Rg
Ctdr1/y14YQdjcVf964c43rA7AFD7hQNveJLr6/MUMTIw+bXNWcaT15l67zj
Oi9cfGDYldtvj2K70B+KeL+4Xp/nReOkXLdeJNddn3XLhL1pqM1OyNRzTabn
srx8aXxZvlF83ixFFm7xCt8ZRONRd7K+E9cuRpsv37pCw3BpS3AC102nBlxn
wmj8Cvja/oLr7cH3jx0Lp1ESOqozwnVikrXx8ygabImXr0TmKDJTKkZk4mis
bXZ12MG1XWuTcgiThsOXT2KWXNeOXZPuu0ljXFeIdY7rTQK6wnvv0nCz/10b
zXX4xrn5WSk0yuzuPMvgemx36fjiVBpSi0aaK7k2PXaW4/qQxsaagd+NXJf4
KLU2ZtF4Hn9ds5trqfj+ui25NBSVW5hfuA7Iu/ckLp/G7+5S6ifXnLdHH/4s
oiHJJNG/ud5AXkkeekqjYkXsyVmu/wdHRcDe
"]], LineBox[CompressedData["
1:eJwV1nk0Ve0XB3Cp6ygqjSo0CBVCI0m+Bxkib5QhGsySt+FGeaWBiCJRMiWk
0ku8mStKAxkbUMmU0HDPvbiZ7jlSGX7n98dZZ33Ws9fZz97PftY6y1yP7vQQ
FxMTa2Wf/7/vn1aL9H7GQ+miGM/xCYJssRl37Kzk4W2TbMoAaz1usYVBLQ8f
RqwKeazTLvno3XnDw7i/+pdm1lMy1FdzGnjoc7yvUs3aq5xSOPCBh5itzSGF
rN98TptR28TD2rM5I8mstX45Tqi28XBoSDs0hHXs3HkDkZ95UNU4ueoA6xHN
+q6+Lh6KnP15pqz3WoS/s/rOQ9IevRJl1i88jcoL+DzUxrxJF2N9MeXRHb8+
HlTyfV7eHydIYfGx2JZBHvKzk4YDWVs1qoXqMjxsnlposIP1Aqk0z/E/PDhM
71rCGyPI0yqO9s4TPOS2ShVms+4ymGtWLk4hyMZu/1HWmf4XV4VNpaCedHrs
xyhBSscaLhJIUxhPPj6YyZqbOzrNXIbCxmcvx5xZ61Bc4XRZCtEV/zrV/CHI
ml0OuXFKFKQ3O5kf/02QV9YoLTJYSaH1jLa0DGuHmf3nhWoUdJVC3DJ/EWTP
q/OORuso+PZ3vq8bIUgpwzzOoAEFKWH9o6FhgmxccoqbbExh8bV9K31ZJ48Z
fzLdRuHa3O2aAwxBqpd8yku1orBb+oNYF02Qf2kRe7c7UTiXf/hh/BBBzp/x
vuqnKwX5nq7PfwYJsrM3ec0dTwpzY9uS97HmZqwlfh+mIMiZ8nX+AEFeXby/
IOM0haz1ny87/2DzSz+QnJxEIaat5poVn83fE+ibk0KhrS3JLJAiSI8a8w6H
WxR+5VAJWTyCHA7pKszLpGBrWS3x8xtByv6Rctr/iMJ/RZ/VDnQRpGO364OS
Rnb/A9XV6S0EqVi9eqlHC4WwpmdIaWb7kT4SIdNO4fwncbuYJoI85RzlfOAb
hai7oft9Gtn8zSVS84Yo1Fdp8Kc2sPVUyrhyZ/LhI8iVTagiyOAvSlKfZ/OR
WGjGP1JJkEpjOkXb5vMxX3FGrVEFQXqvd5FYrsBHTp5axfcygqRv52d9VOWj
/qdm2uSnBCkZtFOka8LHBd7J1Q8KCHKtbux5zhk+bi+4kNd9g+2HbeZqnyDW
w7Y27kkE+c+x0qaOED7qBCNz2hMJsjTz+8riCD4WDMsJyuMI0lR2w1vvRD7M
G2/9OBzNzjf9cV5DIR/vZ6s92xRMkKE5shlJPXxsPHBULtuDICMj9V5Z9fEx
fqL11C03gozxdvkhMcTHiLRpaKwLex9Vstf5/uJDqX13HHcfmy9V/4WFpAAb
7Z+WiNmy9UR5tI4qC5Ckl331nBFBuh8tlHJyEeDNneGUqYsJ8m/LFo15HgLI
F4tviZcjSB+1MevXXgIIXygnLllIkEF8k0RtrgBLk/8KXTmX7bdTm5JMoAB1
njmWc6ax9e+YpF+WLEBww+3VlowEaaS1g7u8RYBL93xk7GslyMy3E7o1nwQQ
39v/PbxKgpT+O49zuFOAeTUX75W8lCCb7s668ZASQKaD4cg8kyC95BortzHs
/p8oLk0skCAjJRzkuLO7of7qceD8G2x8u2tV6fZuDH4pNn53kI0P95O3K+tG
W8B+x0PjHDLDnatcWtGNBSVBIYv/cEgK3hqKNd3o7LfQqvvJId2G95F9dd2w
PtEmqzLIIfe7GbuHtXdjTJa3rvgbh7TdMve/hz+7QVQT5p41HNJwMH+zrEYP
RHl9Tv3RHFLe4YdjS1IPElvj0r/KckhBWaxCSVgvhH/eZD6hJ5OGty75dLsK
8bP5S2JYuTg5ZbdP1kvdH7jJH98UGzCJ7MgI9xxV6kMeuE1Hfk/A5MhA0fmJ
PtiQ2UEOM8ZQ9fbChb+F/ahrnqnsU/sLPdbaww3uA2gUhqVOzx/G3UzFRQbv
BiDf4t88NVsEoYVKUJfJIIamfGy5fmIAAVnWuRlFg/B8I1qwWL0XsbZxS1PV
hmDYuS50woYHV6FVyMG0IYx5h01PkuvCP/rrc/dOF6HnVUn/imvNGFIX6myY
KYLymuX1ZtxmHJJLL58+S4ThzKivQZbNcB2Z0/RsrgjXl1k3bpRsxvYC0ehS
eRGSuP+senK2CUtVCs15qiI81zv0ryb3I2qmr6UOm4lQUP90Yp7HByz4rKkQ
GCLC4r/EbhqurUeQt7SJTqgIM00X/kkYrQP/p+DIYJgIKXoGhouq6/Bw9u0X
bhEi1HS61t7dWwdbs7nuZldFKD64e3Nb+FvEFI5kzbopgsTc124VwteQjijT
SX8sQjMnlDvcWIPjsqku+0pFCGjx3CN+twaf0gMi5j8TQbfs+3O9EzXIer6u
/WKZCC3yz5dumV+DbczdwMM1IrxzXnXwsGM1wpwjqjY2ifDFaddQbG8lJmnv
sqkdFEG6bkULueYlFqQzDSdFIhy8d/rnJMmX0JiVaKnKiPBRIbtpoKMcjr3t
JpdGREjvHO2zv1yOopuemywnREgoSt60XVgGL8mAxe+kafjrDLu8L3iB+tY0
QcsKGm3KHSf6K0pBmRh5hK+i4cfRujp8phSjhbwvm9RoNOTX2Ttql2JllOqn
JA0aGd+5v7WznyDYsOjt3g00rsanTd+e8Bgbs6sLugxpGM3v124LKkbK6b7T
gn00vjE2f2KvF4Eyv/7wqRONUNUUNw2HImgs3DoQ40Kj2b1asH5hEV48uO62
xYOGVtQTjfCkQnzt22oec4gGOqIbLG8XYIXLDVm9UzT4mpfEUcVOtaaJ9awz
NIaLVCX+jcxD8dhABHWWhpL56qCTu/JgnmQyfiWYRsWk1xtfV+Ti0IfB77xw
GhJrOLtvTctBvrFZQXQiDZm93EsVz7Lwe46o1z2Jxh9FzTEZhywYfk1R1k2m
MZ4hPbKOvofGs6LE7zdpiJ+5VzWqfg/Dj1IDN2XQcAgu04zNzMBmVWb7twc0
un+v0rlXnY7KGbf5Gz/QaExWDd5kehO/Tx17IWyk8Xt+iezlx6nQ6iav326i
YaOvvtFUMxXJLzvNZ7TR8Az9miGUT4Gvv0IOr4vtb5aWRK/kDSz7mng8to/t
z59BUnF5Aux2eFmaD9AoIVYRV/+LR2SptorYEA0x878i9mjHYyS+qflvhsab
OXIFYtZxqLeYu9lolIZxcse2E7HXcOZB9KShqQyEyyYftNhzBQWKTm0ZUgzy
3vutVKGjIYjWKNw3nYHSnN2+1uujYeP91r1WhoGF6dZFx0svQ22JVE2aLAOt
l62B+b0RcI5sS7NbyKDL8NsZwZYIxP+6d1JajkHHcLNsdkw4xBvN1PwXM1Bk
Xri8MrqI1othUTuUGeT7tduvrQjFjGHbA5wVDDhqdScuqIZiq5sy+WQlg4a6
VR22184jb0vFoIo6g4yfreU2h0JwYWiS7fhaBj8VFlrFbj6HDXvPyN0nGTh+
UfG9fD0AweFbuuIMGfS1PbvulXgSDQ/H0s9uZRCZbJ8qluKPQ7POaliZMZiW
YNe49ZEf0qvOGoh2MHAts65X0vTFkEhfot2awRMV2wd9jj4gl028qtjFQG3i
QKl65DG0nwq0ibdnYLxEJ/7J2FHMWRN0YJMTgyqngGahqTec95Pqii4MnE+8
HwmnvZBzSWxwmhuD2SPGx7yyD8CcCgpo92Swgx8VH6XtgcQ5Bqj0YlBeTdVm
SLuDIidNyfFm0K5U73i31xXBN85dDjzCYP/lhZm9Vc5oqDHY6cVlUHHjgc+U
MCcsHp4ka+3DoPX0wWtrru7DY6vgNEU/Bu+PVDc86nSA5FlDDyl/9rxqz6il
K+6GXba4Kn2SwT4bbu/Df+wwyAkprDzD9sMOEgftd0F/nZF/TiCDbHq88+oX
a0Q6T96ScI6Nt6DF6NNWWPkkpMorlMH3aHvf+jcW8BMYXbK+wODo7/GbfQe2
oWLeFCvdcPZ7F5ZP9V9uCmfu+VapywyChCZRyb8MkZOyNZWOYrA++dMHWbb2
0VdT3D5fYSC+R+gXEKcP85GKFVUxDOL1HxPsXzUSlUOFObHsfMWl31qjpANq
p3F+QjwD7vm4RwsMNmB9EMcvKJEBlR21wSxuLYLvV+oeTGKg+aH/oesSLdS3
hU5YJzPwXexrMPZEDfKSJhW6qQwWXe9ZZ35zBbw3SIQvT2PPvy7owS3echS7
VllK32awUGB/pfXSUkhcCZvN3GFgF56BbQpysHlq0vz5LjtvH0NqFD7Ow+0e
ieSqDAb6C1+FDGrPwoBstXPuPTbfCtOEraenQd/4gnJiNtv/Mv0sneeTEelj
2hN0n4FXEneqwo5R/babRO7BXHZ9wFavyFikv/Jtte/OfAavCImHpccF+n6/
L+hsLmTXI0PHhZx2/YoVZmPLH7D3S11VeHbXa/3ZtpLl0o8YVFp/ckxvLdR3
Dq4JY4oZnLeLaNm8MFL/fu5Fi47HDNbIvwk8bO+o9z+X8cUY
"]]},
Annotation[#, "Charting`Private`Tag$6983#1"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV1nk4VN8fB3CKiKw1mJlrKyFZUtnpc1IooRRCqWypSArZsitLWcpSthCK
rCltRETIPjN3xmhooRJFWSL68ru/P+5zn9cf5znr532OvMuFw+6ruLi4honv
//+DElzTL5uddr1SGSlpfcy9S6iRfvSFhQE4lM2nO4gfBKH3TrRQiwNQUSB0
cfe0O5hPnLlyMMgGNB7J+Ipt8gOh7/dETlkcA4mG3ueKC2Fwxtfb+rmIMxh8
dhtazL0K5pcEs1GQG3TEca41udwAIR8TdWsLT+goqBId7U6HSe/PAexab2Ck
uD52+i8Txp42fqwWuQgTX0dSqGfuwrva4yp6QX6gcmULbfvvQkh8nPFqv0UI
XJHT7hK8VQnL290/C3GHwsuPr3jGnleDd80OPlptGIz1ntaR2FEDJfZnlCtE
IkFhVGDf3721kHCU95JWUAzoqyUaZDHrwNIWeE0troPdrUqfyF2tsCb9vmSJ
4g344VzqqaX3FhoYQioC3ImwRumqgIlOG6jbcKx6apNgy3nyooZRB8SVGlqU
idyEDbNWCh7e3XCuhJ2+IygNYuYZzoOqdFC7v37LXotseJ6XNu3FPQQZt076
FTVng9mbhfLXtUOwHFbWyKOXA8I24bransPQc3SPXevmXJA87a/ux/4APmt9
o01X7kJs8C3Pk86fwEH7u7eCQwH4NmhtCHQZhezMfR2K64qhYJZmqPVsHGRP
8YVtvVQOs3Zm7GXVWeDfumvNbflaMKJ4KSxNcSF953k3j291sHlt+T71bj4k
WZ01TcpvgsDXhfopy8KoM34+5KlQK/i3RAT8zhRHH9okJPpb2qH28gXHkXQS
sjKulDlDbwex4/df1+aTUH29idLKp3aYIdWyIspIKOuRn67aSjs0SG9fy91E
QnbZNMd4vQ445PhdtHSChLq8k/J2V3ZAupVIZBpIoOekNVtqbr+DZqZ97OtP
EijFdc4g9VwX7OQrr6wXlkJn8EdGGoFdcMz741F+SSmEzLyh82oX3H1TuGAh
K4WmVL4Zry7ogur8aakmDSlkNT2w35fVBWEvDO/aHJJCgpH1R4/s7Qb5y1Xr
lVKk0LW70b7rZXqgdGOrwnkBMjohivyrtvaAd77PNoYYGWlF/bt8QK8HVq4Z
L+0gk9Gou39wtE0PiNhqtg8pkdEeNY/ImYQeeH+ZvWFwLxlx1Zsn0+d7QFTh
zza/UDIKYYuVpfb3AiNAha3wnWhvI5Zu+7EXmh/ebFL9RUZWfaLhklO94LSv
eWrrPBmljMSWWq7pA6cbpZKivBTkMngttH9TH6xryz5/QY6C+NpjNrNP9EHU
J9pKnC0FHSqM8B9j9AFfLt+yzAsK4nGOOLef0wfv0G4poUYKeiETcfLhSB/8
+qpjPd1CQRuzwvd7TfeBR20Y9V4fBc2lhEn/EumH8xSt+YxvFJQVdqV13rwf
kr9E8uLrqWjEIZDE19QPEUpnhHPdqcgiVSB2vK0f5gJVO6nnqOhpV85Cd08/
jPMP197ypqI4aHqfxukHTc+j688GUJHqZoF7Gxf64Uq7w8izOCry+5WtvkuD
Bpf/1V0dKqWioS3q+fLaNLAyG5wZrqAiU9fXYrxGNEhY3Jcw8IiKpJijs53m
NPBv5td48oKK6uvU6hxO06Ctc6e1UAcV8cQ2mvnn0iC63aPD9CsVnX9t/cK+
iAbact8L3n2nIubfERXDMhpomuTkmf6kohIvfuHVL2iQJbhZQGmWmM9ha0YK
gwYkc/nMeG4MpUuPnCoXpIPXr9ibOAVDy3b+tGRxOvBqpD55L42hMyl8e33J
dNjZQPrHlsOQ/mpVJX0lOrwNLVxoUMTQ8JjfzzZjOmRstilV2Y4hxSdrgkeC
6MBnL/QvzgxD5l7V+kURdEgoWdPEY44hbwXHJbdYOnBr2y4GWmDoWVrFla9p
dOC8znxnbo2hff424d+r6OAh3v411RFDXmrL8PApHSLC3I7Qj2Mo5csDLs9X
dBCSHtQSPIkhtu1S5I93dFgS1HNyc8XQOe17MVNf6CBanGhY74mhpMkDJtU/
6BBzu+JE43kM1dyf4704Qwfc5+HCywsYWpLYHzvNxYACkkt6ti+GbsxPxc9R
GcA/tS94VQiGKp8bJS9ZM2DHmLmhRxyGaD7fDtbbM6B9jrFqOh5Df5Rvioae
ZMD+juem/tcxBJmjN5e9GICVa+xzT8JQX9D1NO44Bkw0VRtNpGJoVlPLtjmJ
AV7KtEW9dAxJjQ+TotMZsKmlSTcyA0POjttv8xQyQFDmu+7fOxia1mdn8jUw
QHmy+2hyLoYkZqIc21sY0JHZoXzvLrEfZarU+E4GdG4LC6vIw1A0NSJHgE20
l1Z5WVGAoRL6FqfODwwQm9MsuHcPQ13X6dI3vjKgq269SEohhjb8U8wTmmXA
q9HMSJtiDOk+6TvZs8iAAGWn2K33MeTkFSyXzI1DA1VXYonwfU53gagIDke8
r/VHl2DoXVqASz8Jh9MTiiuGpRiatJDfdAvD4ay13vNJwjqv/IrWq+CwJ1y+
16AMQwqL4OChSfivq+AoYXEdQeE6XRwaT72Lji7H0Iovs1kY4RD7ZZMepQJD
P6oLAlzMcNgrb6xaQpj900v1qRUO/5H+OqlVYuitiu6ntXY4+KnK9pYSzi/q
MX/khsNGRxnfuCoMJX7KXOHxIsavXf1gnHCwjPsTe18c3tZvlN1bjSGPY9vO
lgfjkAb2g2mEbe4sSXNF4cDvozXIIbwbf0s7Ek/051ggiz3CkLr4rdgHKTi0
eFwtO0yYetDJcOk2Dtl23WERhPlvKP+2ysPBCDyyignPtc8U37uPg0nynpUm
wp95Gx3/VBDt+W0rccK9xgki5rU41LxOKflIuD7ctiW3HocI6cnJz4RL6+WC
fr/B4Rp+OopDOOPvhJpJJw53f/5x7SYcrf3s8x0aDhnPctJqCfv4Rt3+wSbm
12dPSifsVG1pgT7hcEtO/ZsnYfOfUtxpYziMM+UF9QnrqIzWfpvC4cM5g6gV
Yr4KHlXnDOZxUM2MsawnLFYULJu8jEOzy1pvH8LLH00Yn3mZYC04MEolPCEt
Fq8txIQRSe7HDcT6DjhyjBI2MOGQ5W22PeHW2w+mh6hMWKischgn9qeGcemB
5iYmqIU67/QlnCe26/hVFSaM7nh7bobY3xtWa8XYmkzQiP/73znCQdcZrap6
TPjqSZ5iE+fjdHtecARigu4qU0CEkbH2qNJBJuRMHuKeeYghtXDuzBA7JvBn
BvsDYUp9l2WvExP+5JhZRhPncVbL9dllLyaEBASr/n5A1MeWlITWeCZMDMS8
cy8i8vD0MSDfZEKw7dKV80R9RBUqznrdIcanXpbjRdTPcelXThseMMFj/qGy
dT6GRMXGt7m2MGGbp1XG42wM/WdZ++VpJxMMLIrwy1kYGk+IyBKgM4E0eviG
ZiaGWngkeWo+MYGLNO2WSNR74MIeFtcKE8Kad44NpxDjfVTAz+JlgZaw7rrA
ZAzVnV3Rq1jHArrf8c61RJ4sD77McaCwYI1EiKwkkTcxrzRdarRYoOEVt4sd
Q+Tv5eTUOEMWXHRcdUwnGkNt6j9bTuxhQUz7Q2pSJIYE8kuUBK1Z4Ky8NWlz
GJGnUbI/Xb1YkFhRZ//vMoa2G4TK6PuygHTd55msP4boM4MHRYNZ8Dv1zRsD
Ih8l3DNq6mNZsLVNatyJyM8cM6FAUiELdlCLks09MPRg3dKqNjYLFA1NbN7a
Ennear8z9yMLpOOG5fyPEOsR+tTd9xsLRNaTqjAi71WnLrbLzrFgNZZIsiPu
g5r+scRA0QEYCzulcckYQw0ZTCkVswEIcuZrOqSGIaZcjXrikwFo4DZfrP6P
itAJTZs/dQNgbCJuoLVIRQ+zq4NOvhmA30nb1B79oaJwiaoWTdoA7B6aUU2Z
oiLldeWOzKkB+LqQ2zv+kYqC54uvyW5lwwh338ENzVQk3ZM5/KiADRu6PIRM
w4j7XZDMQy1lw6jJc2gJoqLpfXe2xFSzoXfqr4u+PxW9fZPhZ9fIBrealzHC
XlTk/SJVYInDBhkswMfOgYpeFyVq75UaBKt7We2nt1ORW0hkEjNpEFB6bP+d
YQpK0JFaLZ0xCJq72zbtYFNQ1UxlgGvuIAw2Fs610ilo0ZNz6lfZIOzd/VsO
b6eglOM6OwQ6BqGQ7ErPrKGgOqOfLKPV7+GmZeqdhhgKEudykC8OeA+tuE7A
1U0U1BSz7YnvKQ4slofXXD9ARln1DsWGHhwoy7sfyiDeb36zURm83hxwWb5l
IrmLjJTd8MDbIRz4mzBJT9hGvM/2BBvVZXCg/6uZggqJjE6tanm7qpsDieo2
rgeGpNBy+FH2Tb0h6MjdJKB0VgoZhIQtV4kPw7OT2z3rLkiiL4Vq1qXfP0Db
qvuWI/wkxOIYjeb3fYQhV9ORokBxRI8gFXU2fALtRYeBsnZhpP2PY5pf8hnY
WqX+Ngb8SGlyJqQlagSi5Iv1Pr/hRppBBlpmF0ZhzdjNFwGzs9ARTIsgW3yB
83kT4ls2ckARtZEPP/sCXH/oxb/ZN+B/cENyGA==
"]], LineBox[CompressedData["
1:eJwVlXk4Vfkfx8lSytgaLvcehWxZxlqK+AhJmhpbopSShCYhoSJroogasqRS
EhGyRErO1xLSaMi+FElZuu49F8eUmH7f3x/nOc/rec7zPZ/l/X5/FT1OOxxf
wcfHR+Hn/++SMM1E37rPwLfQlccbSCRHXkl4+ItPgM0tw1HFWJq8VMLIz5qe
APeBz5VL0fzIUvcP/w39k6DtctFzInEV8k4IJpzrp2DFk5jJEAlxRLjOHOjP
moaAMZm2bS5SaLI+Vb4m7iuIRGkabJWTRhb3rgZOebCB1G2TH3dhIPltJ4ds
vNhgcM1YWOQoA33rtbUq8GHDVF/DZXUfBioRXS1zwp8N7LV6e/afYyBmaHzN
eDgbBnba5p7JZKDZvZf4RjPYcGPEOimvn4Fyly5e633Lhm5JvdUjDrLoYvrh
fze9Y0PR46wuhwOy6IC+2ZG0HjaccDxIoaOySMJ7Wc9pmA1zwh6sRH9ZFNZ1
oadzCp/varT0PkkWORWGEu2CMxCcHSDp1yKLBF0CCxuNZ6AxQX1Jd7Mcsnrq
kfSn2QxUNySdDDeVQzFSjv7SFjPQ3m7+ocFKDq1oN9h8YtcMEII2jVsc5dDP
7XT9apcZsNTbaNVxWg4taoYO2J+dgcQrsxNF+XKI9zN81WjpDBQVGBkISjGR
7iG/r/EVM+BkYqDxpywT+T8//FavegaUMuu7/17HRJwgSI2pm4Gc4kXjUE0m
Yk/xKai1z8CLsslVIVZMNNkVY+Q3PQNDrcXpUmeZ6EN+gteSMgekNXQNyzqY
6JtF42UvdQ68exjm1d7DRJIflgo6NDkguOPj8tggE1n96v/1gT4HcvtfOC2O