forked from HdrHistogram/hdrhistogram-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hdr.go
782 lines (680 loc) · 23.9 KB
/
hdr.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
// data structure. The HDR Histogram allows for fast and accurate analysis of
// the extreme ranges of data with non-normal distributions, like latency.
package hdrhistogram
import (
"fmt"
"io"
"math"
"math/bits"
"sort"
)
// A Bracket is a part of a cumulative distribution.
type Bracket struct {
Quantile float64
Count, ValueAt int64
}
// A Snapshot is an exported view of a Histogram, useful for serializing them.
// A Histogram can be constructed from it by passing it to Import.
type Snapshot struct {
LowestTrackableValue int64
HighestTrackableValue int64
SignificantFigures int64
Counts []int64
}
// A Histogram is a lossy data structure used to record the distribution of
// non-normally distributed data (like latency) with a high degree of accuracy
// and a bounded degree of precision.
type Histogram struct {
lowestDiscernibleValue int64
highestTrackableValue int64
unitMagnitude int64
significantFigures int64
subBucketHalfCountMagnitude int32
subBucketHalfCount int32
subBucketMask int64
subBucketCount int32
bucketCount int32
countsLen int32
totalCount int64
counts []int64
startTimeMs int64
endTimeMs int64
tag string
}
func (h *Histogram) Tag() string {
return h.tag
}
func (h *Histogram) SetTag(tag string) {
h.tag = tag
}
func (h *Histogram) EndTimeMs() int64 {
return h.endTimeMs
}
func (h *Histogram) SetEndTimeMs(endTimeMs int64) {
h.endTimeMs = endTimeMs
}
func (h *Histogram) StartTimeMs() int64 {
return h.startTimeMs
}
func (h *Histogram) SetStartTimeMs(startTimeMs int64) {
h.startTimeMs = startTimeMs
}
// Construct a Histogram given the Lowest and Highest values to be tracked and a number of significant decimal digits.
//
// Providing a lowestDiscernibleValue is useful in situations where the units used for the histogram's values are
// much smaller that the minimal accuracy required.
// E.g. when tracking time values stated in nanosecond units, where the minimal accuracy required is a microsecond,
// the proper value for lowestDiscernibleValue would be 1000.
//
// Note: the numberOfSignificantValueDigits must be [1,5]. If lower than 1 the numberOfSignificantValueDigits will be
// forced to 1, and if higher than 5 the numberOfSignificantValueDigits will be forced to 5.
func New(lowestDiscernibleValue, highestTrackableValue int64, numberOfSignificantValueDigits int) *Histogram {
if numberOfSignificantValueDigits < 1 {
numberOfSignificantValueDigits = 1
} else if numberOfSignificantValueDigits > 5 {
numberOfSignificantValueDigits = 5
}
if lowestDiscernibleValue < 1 {
lowestDiscernibleValue = 1
}
// Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
// it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
// starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
largestValueWithSingleUnitResolution := 2 * math.Pow10(numberOfSignificantValueDigits)
// We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
// provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
// largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution))))
subBucketHalfCountMagnitude := subBucketCountMagnitude
if subBucketHalfCountMagnitude < 1 {
subBucketHalfCountMagnitude = 1
}
subBucketHalfCountMagnitude--
unitMagnitude := int32(math.Floor(math.Log2(float64(lowestDiscernibleValue))))
if unitMagnitude < 0 {
unitMagnitude = 0
}
subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1))
subBucketHalfCount := subBucketCount / 2
subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude)
// determine exponent range needed to support the trackable value with no
// overflow:
smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude)
bucketsNeeded := getBucketsNeededToCoverValue(smallestUntrackableValue, highestTrackableValue)
bucketCount := bucketsNeeded
countsLen := (bucketCount + 1) * (subBucketCount / 2)
return &Histogram{
lowestDiscernibleValue: lowestDiscernibleValue,
highestTrackableValue: highestTrackableValue,
unitMagnitude: int64(unitMagnitude),
significantFigures: int64(numberOfSignificantValueDigits),
subBucketHalfCountMagnitude: subBucketHalfCountMagnitude,
subBucketHalfCount: subBucketHalfCount,
subBucketMask: subBucketMask,
subBucketCount: subBucketCount,
bucketCount: bucketCount,
countsLen: countsLen,
totalCount: 0,
counts: make([]int64, countsLen),
startTimeMs: 0,
endTimeMs: 0,
tag: "",
}
}
func getBucketsNeededToCoverValue(smallestUntrackableValue int64, maxValue int64) int32 {
// always have at least 1 bucket
bucketsNeeded := int32(1)
for smallestUntrackableValue < maxValue {
if smallestUntrackableValue > (math.MaxInt64 / 2) {
// next shift will overflow, meaning that bucket could represent values up to ones greater than
// math.MaxInt64, so it's the last bucket
return bucketsNeeded + 1
}
smallestUntrackableValue <<= 1
bucketsNeeded++
}
return bucketsNeeded
}
// ByteSize returns an estimate of the amount of memory allocated to the
// histogram in bytes.
//
// N.B.: This does not take into account the overhead for slices, which are
// small, constant, and specific to the compiler version.
func (h *Histogram) ByteSize() int {
return 6*8 + 5*4 + len(h.counts)*8
}
func (h *Histogram) getNormalizingIndexOffset() int32 {
return 1
}
// Merge merges the data stored in the given histogram with the receiver,
// returning the number of recorded values which had to be dropped.
func (h *Histogram) Merge(from *Histogram) (dropped int64) {
i := from.rIterator()
for i.next() {
v := i.valueFromIdx
c := i.countAtIdx
if h.RecordValues(v, c) != nil {
dropped += c
}
}
return
}
// TotalCount returns total number of values recorded.
func (h *Histogram) TotalCount() int64 {
return h.totalCount
}
// Max returns the approximate maximum recorded value.
func (h *Histogram) Max() int64 {
var max int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
max = i.highestEquivalentValue
}
}
return h.highestEquivalentValue(max)
}
// Min returns the approximate minimum recorded value.
func (h *Histogram) Min() int64 {
var min int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 && min == 0 {
min = i.highestEquivalentValue
break
}
}
return h.lowestEquivalentValue(min)
}
// Mean returns the approximate arithmetic mean of the recorded values.
func (h *Histogram) Mean() float64 {
if h.totalCount == 0 {
return 0
}
var total int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx)
}
}
return float64(total) / float64(h.totalCount)
}
// StdDev returns the approximate standard deviation of the recorded values.
func (h *Histogram) StdDev() float64 {
if h.totalCount == 0 {
return 0
}
mean := h.Mean()
geometricDevTotal := 0.0
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean
geometricDevTotal += (dev * dev) * float64(i.countAtIdx)
}
}
return math.Sqrt(geometricDevTotal / float64(h.totalCount))
}
// Reset deletes all recorded values and restores the histogram to its original
// state.
func (h *Histogram) Reset() {
h.totalCount = 0
for i := range h.counts {
h.counts[i] = 0
}
}
// RecordValue records the given value, returning an error if the value is out
// of range.
func (h *Histogram) RecordValue(v int64) error {
return h.RecordValues(v, 1)
}
// RecordCorrectedValue records the given value, correcting for stalls in the
// recording process. This only works for processes which are recording values
// at an expected interval (e.g., doing jitter analysis). Processes which are
// recording ad-hoc values (e.g., latency for incoming requests) can't take
// advantage of this.
func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error {
if err := h.RecordValue(v); err != nil {
return err
}
if expectedInterval <= 0 || v <= expectedInterval {
return nil
}
missingValue := v - expectedInterval
for missingValue >= expectedInterval {
if err := h.RecordValue(missingValue); err != nil {
return err
}
missingValue -= expectedInterval
}
return nil
}
// RecordValues records n occurrences of the given value, returning an error if
// the value is out of range.
func (h *Histogram) RecordValues(v, n int64) error {
idx := h.countsIndexFor(v)
if idx < 0 || int(h.countsLen) <= idx {
return fmt.Errorf("value %d is too large to be recorded", v)
}
h.setCountAtIndex(idx, n)
return nil
}
func (h *Histogram) setCountAtIndex(idx int, n int64) {
h.counts[idx] += n
h.totalCount += n
}
// ValueAtQuantile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed quantile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtQuantile(q float64) int64 {
return h.ValueAtPercentile(q)
}
// ValueAtPercentile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed percentile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtPercentile(percentile float64) int64 {
if percentile > 100 {
percentile = 100
}
countAtPercentile := int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
valueFromIdx := h.getValueFromIdxUpToCount(countAtPercentile)
if percentile == 0.0 {
return h.lowestEquivalentValue(valueFromIdx)
}
return h.highestEquivalentValue(valueFromIdx)
}
func (h *Histogram) getValueFromIdxUpToCount(countAtPercentile int64) int64 {
var countToIdx int64
var valueFromIdx int64
var subBucketIdx int32 = -1
var bucketIdx int32
bucketBaseIdx := h.getBucketBaseIdx(bucketIdx)
for {
if countToIdx >= countAtPercentile {
break
}
// increment bucket
subBucketIdx++
if subBucketIdx >= h.subBucketCount {
subBucketIdx = h.subBucketHalfCount
bucketIdx++
bucketBaseIdx = h.getBucketBaseIdx(bucketIdx)
}
countToIdx += h.getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx)
valueFromIdx = int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
return valueFromIdx
}
// ValueAtPercentiles, given an slice of percentiles returns a map containing for each passed percentile,
// the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// Each element in the given an slice of percentiles must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns a map of 0's if no recorded values exist.
func (h *Histogram) ValueAtPercentiles(percentiles []float64) (values map[float64]int64) {
sort.Float64s(percentiles)
totalQuantilesToCalculate := len(percentiles)
values = make(map[float64]int64, totalQuantilesToCalculate)
countAtPercentiles := make([]int64, totalQuantilesToCalculate)
for i, percentile := range percentiles {
if percentile > 100 {
percentile = 100
}
values[percentile] = 0
countAtPercentiles[i] = int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
}
total := int64(0)
currentQuantileSlicePos := 0
i := h.iterator()
for currentQuantileSlicePos < totalQuantilesToCalculate && i.nextCountAtIdx(h.totalCount) {
total += i.countAtIdx
for currentQuantileSlicePos < totalQuantilesToCalculate && total >= countAtPercentiles[currentQuantileSlicePos] {
currentPercentile := percentiles[currentQuantileSlicePos]
if currentPercentile == 0.0 {
values[currentPercentile] = h.lowestEquivalentValue(i.valueFromIdx)
} else {
values[currentPercentile] = h.highestEquivalentValue(i.valueFromIdx)
}
currentQuantileSlicePos++
}
}
return
}
// Determine if two values are equivalent with the histogram's resolution.
// Where "equivalent" means that value samples recorded for any two
// equivalent values are counted in a common total count.
func (h *Histogram) ValuesAreEquivalent(value1, value2 int64) (result bool) {
result = h.lowestEquivalentValue(value1) == h.lowestEquivalentValue(value2)
return
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistribution() []Bracket {
var result []Bracket
i := h.pIterator(1)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: i.highestEquivalentValue,
})
}
return result
}
// SignificantFigures returns the significant figures used to create the
// histogram
func (h *Histogram) SignificantFigures() int64 {
return h.significantFigures
}
// LowestTrackableValue returns the lower bound on values that will be added
// to the histogram
func (h *Histogram) LowestTrackableValue() int64 {
return h.lowestDiscernibleValue
}
// HighestTrackableValue returns the upper bound on values that will be added
// to the histogram
func (h *Histogram) HighestTrackableValue() int64 {
return h.highestTrackableValue
}
// Histogram bar for plotting
type Bar struct {
From, To, Count int64
}
// Pretty print as csv for easy plotting
func (b Bar) String() string {
return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count)
}
// Distribution returns an ordered list of bars of the
// distribution of recorded values, counts can be normalized to a probability
func (h *Histogram) Distribution() (result []Bar) {
i := h.iterator()
for i.next() {
result = append(result, Bar{
Count: i.countAtIdx,
From: h.lowestEquivalentValue(i.valueFromIdx),
To: i.highestEquivalentValue,
})
}
return result
}
// Equals returns true if the two Histograms are equivalent, false if not.
func (h *Histogram) Equals(other *Histogram) bool {
switch {
case
h.lowestDiscernibleValue != other.lowestDiscernibleValue,
h.highestTrackableValue != other.highestTrackableValue,
h.unitMagnitude != other.unitMagnitude,
h.significantFigures != other.significantFigures,
h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude,
h.subBucketHalfCount != other.subBucketHalfCount,
h.subBucketMask != other.subBucketMask,
h.subBucketCount != other.subBucketCount,
h.bucketCount != other.bucketCount,
h.countsLen != other.countsLen,
h.totalCount != other.totalCount:
return false
default:
for i, c := range h.counts {
if c != other.counts[i] {
return false
}
}
}
return true
}
// Export returns a snapshot view of the Histogram. This can be later passed to
// Import to construct a new Histogram with the same state.
func (h *Histogram) Export() *Snapshot {
return &Snapshot{
LowestTrackableValue: h.lowestDiscernibleValue,
HighestTrackableValue: h.highestTrackableValue,
SignificantFigures: h.significantFigures,
Counts: append([]int64(nil), h.counts...), // copy
}
}
// Import returns a new Histogram populated from the Snapshot data (which the
// caller must stop accessing).
func Import(s *Snapshot) *Histogram {
h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures))
h.counts = s.Counts
totalCount := int64(0)
for i := int32(0); i < h.countsLen; i++ {
countAtIndex := h.counts[i]
if countAtIndex > 0 {
totalCount += countAtIndex
}
}
h.totalCount = totalCount
return h
}
func (h *Histogram) iterator() *iterator {
return &iterator{
h: h,
subBucketIdx: -1,
}
}
func (h *Histogram) rIterator() *rIterator {
return &rIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
}
}
func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator {
return &pIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
ticksPerHalfDistance: ticksPerHalfDistance,
}
}
func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) sizeOfEquivalentValueRangeGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
adjustedBucket := bucketIdx
if subBucketIdx >= h.subBucketCount {
adjustedBucket++
}
return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket))
}
func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 {
return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
func (h *Histogram) lowestEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) lowestEquivalentValueGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return h.valueFromIndex(bucketIdx, subBucketIdx)
}
func (h *Histogram) nextNonEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx) + h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) highestEquivalentValue(v int64) int64 {
return h.nextNonEquivalentValue(v) - 1
}
func (h *Histogram) medianEquivalentValue(v int64) int64 {
return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1)
}
func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 {
return h.counts[h.countsIndex(bucketIdx, subBucketIdx)]
}
func (h *Histogram) getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx int32) int64 {
return h.counts[bucketBaseIdx+subBucketIdx-h.subBucketHalfCount]
}
func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 {
return h.getBucketBaseIdx(bucketIdx) + subBucketIdx - h.subBucketHalfCount
}
func (h *Histogram) getBucketBaseIdx(bucketIdx int32) int32 {
return (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude)
}
// return the lowest (and therefore highest precision) bucket index that can represent the value
// Calculates the number of powers of two by which the value is greater than the biggest value that fits in
// bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
func (h *Histogram) getBucketIndex(v int64) int32 {
var pow2Ceiling = int64(64 - bits.LeadingZeros64(uint64(v|h.subBucketMask)))
return int32(pow2Ceiling - int64(h.unitMagnitude) -
int64(h.subBucketHalfCountMagnitude+1))
}
// For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
// For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
// k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
// buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
// returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
// and therefore in the top half of subBucketCount.
func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 {
return int32(v >> uint(int64(idx)+int64(h.unitMagnitude)))
}
func (h *Histogram) countsIndexFor(v int64) int {
bucketIdx := h.getBucketIndex(v)
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return int(h.countsIndex(bucketIdx, subBucketIdx))
}
func (h *Histogram) getIntegerToDoubleValueConversionRatio() float64 {
return 1.0
}
type iterator struct {
h *Histogram
bucketIdx, subBucketIdx int32
countAtIdx, countToIdx, valueFromIdx int64
highestEquivalentValue int64
}
// nextCountAtIdx does not update the iterator highestEquivalentValue in order to optimize cpu usage.
func (i *iterator) nextCountAtIdx(limit int64) bool {
if i.countToIdx >= limit {
return false
}
// increment bucket
i.subBucketIdx++
if i.subBucketIdx >= i.h.subBucketCount {
i.subBucketIdx = i.h.subBucketHalfCount
i.bucketIdx++
}
if i.bucketIdx >= i.h.bucketCount {
return false
}
i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx)
i.countToIdx += i.countAtIdx
i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx)
return true
}
// Returns the next element in the iteration.
func (i *iterator) next() bool {
if !i.nextCountAtIdx(i.h.totalCount) {
return false
}
i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx)
return true
}
type rIterator struct {
iterator
countAddedThisStep int64
}
func (r *rIterator) next() bool {
for r.iterator.next() {
if r.countAtIdx != 0 {
r.countAddedThisStep = r.countAtIdx
return true
}
}
return false
}
type pIterator struct {
iterator
seenLastValue bool
ticksPerHalfDistance int32
percentileToIteratorTo float64
percentile float64
}
func (p *pIterator) next() bool {
if !(p.countToIdx < p.h.totalCount) {
if p.seenLastValue {
return false
}
p.seenLastValue = true
p.percentile = 100
return true
}
if p.subBucketIdx == -1 && !p.iterator.next() {
return false
}
var done = false
for !done {
currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount)
if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile {
p.percentile = p.percentileToIteratorTo
halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1))
percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance
p.percentileToIteratorTo += 100.0 / percentileReportingTicks
return true
}
done = !p.iterator.next()
}
return true
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistributionWithTicks(ticksPerHalfDistance int32) []Bracket {
var result []Bracket
i := h.pIterator(ticksPerHalfDistance)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: int64(i.highestEquivalentValue),
})
}
return result
}
// Output the percentiles distribution in a text format
func (h *Histogram) PercentilesPrint(writer io.Writer, ticksPerHalfDistance int32, valueScale float64) (outputWriter io.Writer, err error) {
outputWriter = writer
dist := h.CumulativeDistributionWithTicks(ticksPerHalfDistance)
_, err = outputWriter.Write([]byte(" Value\tPercentile\tTotalCount\t1/(1-Percentile)\n\n"))
if err != nil {
return
}
for _, slice := range dist {
percentile := slice.Quantile / 100.0
inverted_percentile := 1.0 / (1.0 - percentile)
var inverted_percentile_string = fmt.Sprintf("%12.2f", inverted_percentile)
// Given that other language implementations display inf (instead of Go's +Inf)
// we want to be as close as possible to them
if math.IsInf(inverted_percentile, 1) {
inverted_percentile_string = fmt.Sprintf("%12s", "inf")
}
_, err = outputWriter.Write([]byte(fmt.Sprintf("%12.3f %12f %12d %s\n", float64(slice.ValueAt)/valueScale, percentile, slice.Count, inverted_percentile_string)))
if err != nil {
return
}
}
footer := fmt.Sprintf("#[Mean = %12.3f, StdDeviation = %12.3f]\n#[Max = %12.3f, Total count = %12d]\n#[Buckets = %12d, SubBuckets = %12d]\n",
h.Mean()/valueScale,
h.StdDev()/valueScale,
float64(h.Max())/valueScale,
h.TotalCount(),
h.bucketCount,
h.subBucketCount,
)
_, err = outputWriter.Write([]byte(footer))
return
}