From 53be4d163fd10890d47b44f4f17cf500a60b99a4 Mon Sep 17 00:00:00 2001 From: AAEE86 <33052466+AAEE86@users.noreply.github.com> Date: Sun, 22 Sep 2024 10:14:33 +0800 Subject: [PATCH] Add model parameter translation (#8509) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: swingchen01 Co-authored-by: 陈长君 --- .../model_providers/ollama/llm/llm.py | 83 ++++++++++++------- .../openai_api_compatible/llm/llm.py | 35 ++++++-- 2 files changed, 82 insertions(+), 36 deletions(-) diff --git a/api/core/model_runtime/model_providers/ollama/llm/llm.py b/api/core/model_runtime/model_providers/ollama/llm/llm.py index 1ed77a2ee8ed46..ff732e69259e2b 100644 --- a/api/core/model_runtime/model_providers/ollama/llm/llm.py +++ b/api/core/model_runtime/model_providers/ollama/llm/llm.py @@ -472,12 +472,13 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ParameterRule( name=DefaultParameterName.TEMPERATURE.value, use_template=DefaultParameterName.TEMPERATURE.value, - label=I18nObject(en_US="Temperature"), + label=I18nObject(en_US="Temperature", zh_Hans="温度"), type=ParameterType.FLOAT, help=I18nObject( en_US="The temperature of the model. " "Increasing the temperature will make the model answer " - "more creatively. (Default: 0.8)" + "more creatively. (Default: 0.8)", + zh_Hans="模型的温度。增加温度将使模型的回答更具创造性。(默认值:0.8)", ), default=0.1, min=0, @@ -486,12 +487,13 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ParameterRule( name=DefaultParameterName.TOP_P.value, use_template=DefaultParameterName.TOP_P.value, - label=I18nObject(en_US="Top P"), + label=I18nObject(en_US="Top P", zh_Hans="Top P"), type=ParameterType.FLOAT, help=I18nObject( en_US="Works together with top-k. A higher value (e.g., 0.95) will lead to " "more diverse text, while a lower value (e.g., 0.5) will generate more " - "focused and conservative text. (Default: 0.9)" + "focused and conservative text. (Default: 0.9)", + zh_Hans="与top-k一起工作。较高的值(例如,0.95)会导致生成更多样化的文本,而较低的值(例如,0.5)会生成更专注和保守的文本。(默认值:0.9)", ), default=0.9, min=0, @@ -499,12 +501,13 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name="top_k", - label=I18nObject(en_US="Top K"), + label=I18nObject(en_US="Top K", zh_Hans="Top K"), type=ParameterType.INT, help=I18nObject( en_US="Reduces the probability of generating nonsense. " "A higher value (e.g. 100) will give more diverse answers, " - "while a lower value (e.g. 10) will be more conservative. (Default: 40)" + "while a lower value (e.g. 10) will be more conservative. (Default: 40)", + zh_Hans="减少生成无意义内容的可能性。较高的值(例如100)将提供更多样化的答案,而较低的值(例如10)将更为保守。(默认值:40)", ), min=1, max=100, @@ -516,7 +519,8 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode help=I18nObject( en_US="Sets how strongly to penalize repetitions. " "A higher value (e.g., 1.5) will penalize repetitions more strongly, " - "while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)" + "while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)", + zh_Hans="设置对重复内容的惩罚强度。一个较高的值(例如,1.5)会更强地惩罚重复内容,而一个较低的值(例如,0.9)则会相对宽容。(默认值:1.1)", ), min=-2, max=2, @@ -524,11 +528,12 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ParameterRule( name="num_predict", use_template="max_tokens", - label=I18nObject(en_US="Num Predict"), + label=I18nObject(en_US="Num Predict", zh_Hans="最大令牌数预测"), type=ParameterType.INT, help=I18nObject( en_US="Maximum number of tokens to predict when generating text. " - "(Default: 128, -1 = infinite generation, -2 = fill context)" + "(Default: 128, -1 = infinite generation, -2 = fill context)", + zh_Hans="生成文本时预测的最大令牌数。(默认值:128,-1 = 无限生成,-2 = 填充上下文)", ), default=(512 if int(credentials.get("max_tokens", 4096)) >= 768 else 128), min=-2, @@ -536,121 +541,137 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name="mirostat", - label=I18nObject(en_US="Mirostat sampling"), + label=I18nObject(en_US="Mirostat sampling", zh_Hans="Mirostat 采样"), type=ParameterType.INT, help=I18nObject( en_US="Enable Mirostat sampling for controlling perplexity. " - "(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)" + "(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", + zh_Hans="启用 Mirostat 采样以控制困惑度。" + "(默认值:0,0 = 禁用,1 = Mirostat,2 = Mirostat 2.0)", ), min=0, max=2, ), ParameterRule( name="mirostat_eta", - label=I18nObject(en_US="Mirostat Eta"), + label=I18nObject(en_US="Mirostat Eta", zh_Hans="学习率"), type=ParameterType.FLOAT, help=I18nObject( en_US="Influences how quickly the algorithm responds to feedback from " "the generated text. A lower learning rate will result in slower adjustments, " "while a higher learning rate will make the algorithm more responsive. " - "(Default: 0.1)" + "(Default: 0.1)", + zh_Hans="影响算法对生成文本反馈响应的速度。较低的学习率会导致调整速度变慢,而较高的学习率会使得算法更加灵敏。(默认值:0.1)", ), precision=1, ), ParameterRule( name="mirostat_tau", - label=I18nObject(en_US="Mirostat Tau"), + label=I18nObject(en_US="Mirostat Tau", zh_Hans="文本连贯度"), type=ParameterType.FLOAT, help=I18nObject( en_US="Controls the balance between coherence and diversity of the output. " - "A lower value will result in more focused and coherent text. (Default: 5.0)" + "A lower value will result in more focused and coherent text. (Default: 5.0)", + zh_Hans="控制输出的连贯性和多样性之间的平衡。较低的值会导致更专注和连贯的文本。(默认值:5.0)", ), precision=1, ), ParameterRule( name="num_ctx", - label=I18nObject(en_US="Size of context window"), + label=I18nObject(en_US="Size of context window", zh_Hans="上下文窗口大小"), type=ParameterType.INT, help=I18nObject( - en_US="Sets the size of the context window used to generate the next token. (Default: 2048)" + en_US="Sets the size of the context window used to generate the next token. (Default: 2048)", + zh_Hans="设置用于生成下一个标记的上下文窗口大小。(默认值:2048)", ), default=2048, min=1, ), ParameterRule( name="num_gpu", - label=I18nObject(en_US="GPU Layers"), + label=I18nObject(en_US="GPU Layers", zh_Hans="GPU 层数"), type=ParameterType.INT, help=I18nObject( en_US="The number of layers to offload to the GPU(s). " "On macOS it defaults to 1 to enable metal support, 0 to disable." "As long as a model fits into one gpu it stays in one. " - "It does not set the number of GPU(s). " + "It does not set the number of GPU(s). ", + zh_Hans="加载到 GPU 的层数。在 macOS 上,默认为 1 以启用 Metal 支持,设置为 0 则禁用。" + "只要模型适合一个 GPU,它就保留在其中。它不设置 GPU 的数量。", ), min=-1, default=1, ), ParameterRule( name="num_thread", - label=I18nObject(en_US="Num Thread"), + label=I18nObject(en_US="Num Thread", zh_Hans="线程数"), type=ParameterType.INT, help=I18nObject( en_US="Sets the number of threads to use during computation. " "By default, Ollama will detect this for optimal performance. " "It is recommended to set this value to the number of physical CPU cores " - "your system has (as opposed to the logical number of cores)." + "your system has (as opposed to the logical number of cores).", + zh_Hans="设置计算过程中使用的线程数。默认情况下,Ollama会检测以获得最佳性能。建议将此值设置为系统拥有的物理CPU核心数(而不是逻辑核心数)。", ), min=1, ), ParameterRule( name="repeat_last_n", - label=I18nObject(en_US="Repeat last N"), + label=I18nObject(en_US="Repeat last N", zh_Hans="回溯内容"), type=ParameterType.INT, help=I18nObject( en_US="Sets how far back for the model to look back to prevent repetition. " - "(Default: 64, 0 = disabled, -1 = num_ctx)" + "(Default: 64, 0 = disabled, -1 = num_ctx)", + zh_Hans="设置模型回溯多远的内容以防止重复。(默认值:64,0 = 禁用,-1 = num_ctx)", ), min=-1, ), ParameterRule( name="tfs_z", - label=I18nObject(en_US="TFS Z"), + label=I18nObject(en_US="TFS Z", zh_Hans="减少标记影响"), type=ParameterType.FLOAT, help=I18nObject( en_US="Tail free sampling is used to reduce the impact of less probable tokens " "from the output. A higher value (e.g., 2.0) will reduce the impact more, " - "while a value of 1.0 disables this setting. (default: 1)" + "while a value of 1.0 disables this setting. (default: 1)", + zh_Hans="用于减少输出中不太可能的标记的影响。较高的值(例如,2.0)会更多地减少这种影响,而1.0的值则会禁用此设置。(默认值:1)", ), precision=1, ), ParameterRule( name="seed", - label=I18nObject(en_US="Seed"), + label=I18nObject(en_US="Seed", zh_Hans="随机数种子"), type=ParameterType.INT, help=I18nObject( en_US="Sets the random number seed to use for generation. Setting this to " "a specific number will make the model generate the same text for " - "the same prompt. (Default: 0)" + "the same prompt. (Default: 0)", + zh_Hans="设置用于生成的随机数种子。将此设置为特定数字将使模型对相同的提示生成相同的文本。(默认值:0)", ), ), ParameterRule( name="keep_alive", - label=I18nObject(en_US="Keep Alive"), + label=I18nObject(en_US="Keep Alive", zh_Hans="模型存活时间"), type=ParameterType.STRING, help=I18nObject( en_US="Sets how long the model is kept in memory after generating a response. " "This must be a duration string with a unit (e.g., '10m' for 10 minutes or '24h' for 24 hours)." " A negative number keeps the model loaded indefinitely, and '0' unloads the model" " immediately after generating a response." - " Valid time units are 's','m','h'. (Default: 5m)" + " Valid time units are 's','m','h'. (Default: 5m)", + zh_Hans="设置模型在生成响应后在内存中保留的时间。" + "这必须是一个带有单位的持续时间字符串(例如,'10m' 表示10分钟,'24h' 表示24小时)。" + "负数表示无限期地保留模型,'0'表示在生成响应后立即卸载模型。" + "有效的时间单位有 's'(秒)、'm'(分钟)、'h'(小时)。(默认值:5m)", ), ), ParameterRule( name="format", - label=I18nObject(en_US="Format"), + label=I18nObject(en_US="Format", zh_Hans="返回格式"), type=ParameterType.STRING, help=I18nObject( - en_US="the format to return a response in. Currently the only accepted value is json." + en_US="the format to return a response in. Currently the only accepted value is json.", + zh_Hans="返回响应的格式。目前唯一接受的值是json。", ), options=["json"], ), diff --git a/api/core/model_runtime/model_providers/openai_api_compatible/llm/llm.py b/api/core/model_runtime/model_providers/openai_api_compatible/llm/llm.py index 5a8a754f724223..c2ffe653c8b70a 100644 --- a/api/core/model_runtime/model_providers/openai_api_compatible/llm/llm.py +++ b/api/core/model_runtime/model_providers/openai_api_compatible/llm/llm.py @@ -205,7 +205,13 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode parameter_rules=[ ParameterRule( name=DefaultParameterName.TEMPERATURE.value, - label=I18nObject(en_US="Temperature"), + label=I18nObject(en_US="Temperature", zh_Hans="温度"), + help=I18nObject( + en_US="Kernel sampling threshold. Used to determine the randomness of the results." + "The higher the value, the stronger the randomness." + "The higher the possibility of getting different answers to the same question.", + zh_Hans="核采样阈值。用于决定结果随机性,取值越高随机性越强即相同的问题得到的不同答案的可能性越高。", + ), type=ParameterType.FLOAT, default=float(credentials.get("temperature", 0.7)), min=0, @@ -214,7 +220,13 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name=DefaultParameterName.TOP_P.value, - label=I18nObject(en_US="Top P"), + label=I18nObject(en_US="Top P", zh_Hans="Top P"), + help=I18nObject( + en_US="The probability threshold of the nucleus sampling method during the generation process." + "The larger the value is, the higher the randomness of generation will be." + "The smaller the value is, the higher the certainty of generation will be.", + zh_Hans="生成过程中核采样方法概率阈值。取值越大,生成的随机性越高;取值越小,生成的确定性越高。", + ), type=ParameterType.FLOAT, default=float(credentials.get("top_p", 1)), min=0, @@ -223,7 +235,12 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name=DefaultParameterName.FREQUENCY_PENALTY.value, - label=I18nObject(en_US="Frequency Penalty"), + label=I18nObject(en_US="Frequency Penalty", zh_Hans="频率惩罚"), + help=I18nObject( + en_US="For controlling the repetition rate of words used by the model." + "Increasing this can reduce the repetition of the same words in the model's output.", + zh_Hans="用于控制模型已使用字词的重复率。 提高此项可以降低模型在输出中重复相同字词的重复度。", + ), type=ParameterType.FLOAT, default=float(credentials.get("frequency_penalty", 0)), min=-2, @@ -231,7 +248,12 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name=DefaultParameterName.PRESENCE_PENALTY.value, - label=I18nObject(en_US="Presence Penalty"), + label=I18nObject(en_US="Presence Penalty", zh_Hans="存在惩罚"), + help=I18nObject( + en_US="Used to control the repetition rate when generating models." + "Increasing this can reduce the repetition rate of model generation.", + zh_Hans="用于控制模型生成时的重复度。提高此项可以降低模型生成的重复度。", + ), type=ParameterType.FLOAT, default=float(credentials.get("presence_penalty", 0)), min=-2, @@ -239,7 +261,10 @@ def get_customizable_model_schema(self, model: str, credentials: dict) -> AIMode ), ParameterRule( name=DefaultParameterName.MAX_TOKENS.value, - label=I18nObject(en_US="Max Tokens"), + label=I18nObject(en_US="Max Tokens", zh_Hans="最大标记"), + help=I18nObject( + en_US="Maximum length of tokens for the model response.", zh_Hans="模型回答的tokens的最大长度。" + ), type=ParameterType.INT, default=512, min=1,