Skip to content

Latest commit

 

History

History
51 lines (41 loc) · 1.2 KB

README.md

File metadata and controls

51 lines (41 loc) · 1.2 KB

docker-sklearn-predict-http-api

A docker image that provides a web api to a sklearn model prediction methods

Usage

Build your model:

from sklearn import svm
from sklearn import datasets
import pandas as pd
clf = svm.SVC(probability=True)
iris = datasets.load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
X = X[["sepal length (cm)"]]
y = iris.target
clf.fit(X, y)  

Save it:

from sklearn.externals import joblib
joblib.dump(clf, 'iris-svc.pkl')

Create a Dockerfile from "hexacta/sklearn-predict-http-api" and copy your model:

FROM hexacta/sklearn-predict-http-api:latest
COPY iris-svc.pkl /usr/src/app/model.pkl

Build and run the image using docker:

$ docker build -t iris-svc .
$ docker run -d -p 4000:8080 iris-svc

Make requests to the API:

$ curl -H "Content-Type: application/json" -X POST -d '{"sepal length (cm)":4.4}' http://localhost:4000/predictproba
  [{"0":0.8284069169,"1":0.1077571623,"2":0.0638359208}]
$ curl -H "Content-Type: application/json" -X POST -d '[{"sepal length (cm)":4.4}, {"sepal length (cm)":15}]' http://localhost:4000/predict
  [0, 2]

API

TODO

License

MIT © Hexacta