-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_param_space.py
executable file
·153 lines (112 loc) · 4.5 KB
/
plot_param_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import argparse
import matplotlib.pyplot as plt
import numpy as np
import netCDF4
import octant
import cmocean
from case_dictionary import case_dictionary
# supress warnings that occur in division in the polyfit_omega function
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('directory', type=str, help='directory with top-level cases listed')
args = parser.parse_args()
cases = case_dictionary(args.directory)
# files = [cases.find(Ri=Ri, delta=delta, N2=1e-4)
# for delta in [0.1, 0.2, 0.3, 0.5]
# for Ri in [1, 2, 3, 5, 10]]
# fig, axs = plt.subplots(4, 5, figsize=(13.5, 6))
# normalize_time = False
files = [cases.find(Ri=Ri, S=S, N2=1e-4)
for S in [0.1, 0.2, 0.3, 0.5]
for Ri in [1, 2, 3, 5, 10]]
fig, axs = plt.subplots(4, 5, figsize=(13.5, 6))
normalize_time = True
axs = np.flipud(axs)
ax_crnr = axs[0, 0]
def polyfit_omega(n=6):
'fit an order-n polynomial to the maximum growth rate as a function of delta, the slope parameter.'
delta, mu = np.mgrid[-1.2:2.2:1001j, 0:4.2:1001j]
tmu = np.tanh(mu)
omega = np.sqrt( (1.0+delta)*(mu - tmu)/tmu
-0.25*(delta/tmu + mu)**2 ).real
omega2 = (1.0+delta)*(mu - tmu)/tmu - 0.25*(delta/tmu + mu)**2
omega = np.ma.masked_where(np.isnan(omega), omega)
omega_max = omega.max(axis=1)
idx = np.where(~omega_max.mask)
omega_max = omega_max[idx]
delta = delta[:, 0][idx]
p = np.polyfit(delta, omega_max, n)
return p
omega_poly = polyfit_omega()
# ref_timescale = 7.0 # days
# ref_delta = 0.1
# ref_Ri = 1.0
# ref_f = 1e-4
# omega = np.polyval(omega_poly, ref_delta) # non-dim
# omega_dim = 86400.0 * omega * ref_f / np.sqrt(ref_Ri) # rad/days
# timescale_factor = ref_timescale * omega_dim
for ax, file in zip(axs.flat, files):
hisfilename = os.path.join(args.directory, file[0], 'shelfstrat_his.nc')
params = cases[file[0]]
omega = np.polyval(omega_poly, params['delta'])
omega_dim = 86400.0 * omega * params['f'] / np.sqrt(params['Ri']) # rad/days
if normalize_time:
# timescale = timescale_factor / omega_dim
omega = np.polyval(omega_poly, params['delta'])
omega_dim = 86400.0 * omega * params['f'] / np.sqrt(params['Ri']) # rad/days
timescale = 50.0 * np.sqrt(params['S']) / omega_dim
else:
timescale = ref_timescale
print(hisfilename)
nc = netCDF4.Dataset(hisfilename)
time = nc.variables['ocean_time'][:] / 86400.0
if timescale > 365:
timescale = 365
tidx = np.where( time >= timescale )[0]
if len(tidx) == 0:
tidx = len(time) - 1
else:
tidx = tidx.min()
print(' {0:d}/{1:d} -- {2:f}'.format(tidx, len(time), time[tidx]))
x = nc.variables['x_rho'][:]/1000.0
y = nc.variables['y_rho'][:]/1000.0
sss = nc.variables['salt'][tidx, -1, :, :]
ax.contourf(x, y, sss, 10, cmap=cmocean.cm.salinity)
ax.set_aspect(1.0)
Rd = np.sqrt(params['N2']) * 50.0 / params['f']
Uscale = np.sqrt(params['N2']/params['Ri'])*50.0
Ladv = Uscale / params['f']
ax.text(0.05, 0.9,
# '$R_d$=%5.2f km\n$L_{adv}$=%5.2f km\n$T$=%5.2f days\nTo=%5.2f days'% (Rd/1000.0, Ladv/1000.0, time[tidx],timescale),
'$R_d$=%5.2f km\n$L_i$=%5.2f km\n$T$ =%5.2f days'% (Rd/1000.0, Ladv/1000.0, time[tidx]),
# '$R_d$=%5.2f km\n$T$=%6.2f days\n$T_0$=%6.2f'% (Rd/1000.0, time[tidx], timescale),
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes,
fontsize=8)
def expsplit(qlist):
res = ()
for q in qlist:
qstr = '%e' % q
res += tuple(map(float, qstr.split('e')))
return res
paramstrs = expsplit([params['M2'], params['f']]) + (params['delta'],)
ax.text(0.5, 0.9,
'$M^2\!$=%5.2fx10$^{%d}$ s$^{-2}$\n$f\,$=%5.2fx10$^{%d}$ s$^{-1}$\n$\delta\,$=%5.2f' % paramstrs,
horizontalalignment='left',
verticalalignment='top',
transform=ax.transAxes,
fontsize=8)
if ax == ax_crnr:
ax.set_xlabel('Along-shore distance [km]')
ax.set_ylabel('Cross-shore distance [km]')
else:
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.subplots_adjust(left=0.05, bottom=0.095, right=0.95, top=0.995,
wspace=0.05, hspace=0.05)
plt.savefig('Ri_S_sss.png', dpi=300)
# plt.savefig('Ri_S_sss.pdf', dpi=300)
plt.show()