-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_energy_space.py
executable file
·200 lines (143 loc) · 5.64 KB
/
plot_energy_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import argparse
import matplotlib.pyplot as plt
import numpy as np
import netCDF4
import octant
from case_dictionary import case_dictionary
parser = argparse.ArgumentParser()
parser.add_argument('directory', type=str, help='directory with top-level cases listed')
args = parser.parse_args()
cases = case_dictionary(args.directory)
fig, axs = plt.subplots(4, 5, figsize=(13.5, 6))
axs = np.flipud(axs)
ax_crnr = axs[0, 0]
##### TRY BOTH FILES SETS TO EXAMINE DIFFERENCE. MAYBE USE THE UNION.
# files = [cases.find(Ri=Ri, delta=delta, N2=1e-4)
# for delta in [0.1, 0.2, 0.3, 0.5]
# for Ri in [1, 2, 3, 5, 10]]
files = [cases.find(Ri=Ri, S=S, N2=1e-4)
for S in [0.1, 0.2, 0.3, 0.5]
for Ri in [1, 2, 3, 5, 10]]
delta_colors = {'0.1': (1.0, 0.0, 0.0),
'0.2': (0.8, 0.1, 0.2),
'0.3': (0.2, 0.1, 0.8),
'0.5': (0.0, 0.0, 1.0),}
delta_linestyles = {'0.1': '-',
'0.2': '--',
'0.3': '-.',
'0.5': '-',}
def polyfit_omega(n=6):
'fit an order-n polynomial to the maximum growth rate as a function of delta, the slope parameter.'
delta, mu = np.mgrid[-1.2:2.2:1001j, 0:4.2:1001j]
tmu = np.tanh(mu)
omega = np.sqrt( (1.0+delta)*(mu - tmu)/tmu
-0.25*(delta/tmu + mu)**2 ).real
omega2 = (1.0+delta)*(mu - tmu)/tmu - 0.25*(delta/tmu + mu)**2
omega = np.ma.masked_where(np.isnan(omega), omega)
omega_max = omega.max(axis=1)
idx = np.where(~omega_max.mask)
omega_max = omega_max[idx]
delta = delta[:, 0][idx]
p = np.polyfit(delta, omega_max, n)
return p
omega_poly = polyfit_omega()
ref_timescale = 10.0 # days
ref_delta = 0.1
ref_Ri = 1.0
ref_f = 1e-4
omega = np.polyval(omega_poly, ref_delta) # non-dim
omega_dim = 86400.0 * omega * ref_f / np.sqrt(ref_Ri) # rad/days
timescale_factor = ref_timescale * omega_dim
Ris = []
deltas = []
ekes = []
mkes = []
tkes = []
norms = []
fig_all = plt.figure()
ax_all_unnormed = fig_all.add_subplot(211)
ax_all_normed = fig_all.add_subplot(212)
for ax, file in zip(axs.flat, files):
hisfilename = os.path.join(args.directory, file[0], 'shelfstrat_his.nc')
params = cases[file[0]]
print hisfilename
omega = np.polyval(omega_poly, params['delta'])
omega_dim = 86400.0 * omega * params['f'] / np.sqrt(params['Ri'])
timescale = timescale_factor / omega_dim
nc = netCDF4.Dataset(hisfilename)
time = nc.variables['ocean_time'][:] / 86400.0
tidx = np.where( time >= timescale )[0]
if len(tidx) == 0:
tidx = len(time) - 1
else:
tidx = tidx.min()
print(' time index: {0:d}/{1:d} -- {2:f}'.format(tidx, len(time), time[tidx]))
u = nc.variables['u'][:tidx, -1, :, :]
v = nc.variables['v'][:tidx, -1, :, :]
time = time[:tidx]
u, v = octant.tools.shrink(u, v)
umean = u.mean(axis=-1)[:, :, None]
up = u - umean
vp = v
tke = 0.5*(u**2 + v**2)
eke = 0.5*(up**2 + v**2)
mke = 0.5*(umean**2)
norm = mke.mean(axis=-1).mean(axis=-1)[0]
ax.plot(time*omega_dim, tke.mean(axis=-1).mean(axis=-1)/norm, '-k')
ax.plot(time*omega_dim, eke.mean(axis=-1).mean(axis=-1)/norm, '-r')
ax.plot(time*omega_dim, mke.mean(axis=-1).mean(axis=-1)/norm, '-b')
if params['S'] == 0.1:
ax_crnr.plot(time*omega_dim, eke.mean(axis=-1).mean(axis=-1)/norm/np.sqrt(params['Ri']), '-r', lw=0.25)
delta_str = '%0.1f' % params['S']
ax_all_normed.plot(time*omega_dim, eke.mean(axis=-1).mean(axis=-1)/norm/np.sqrt(params['Ri']),
linestyle=delta_linestyles[delta_str], color=delta_colors[delta_str])
ax_all_unnormed.plot(time, eke.mean(axis=-1).mean(axis=-1)/norm/np.sqrt(params['Ri']),
linestyle=delta_linestyles[delta_str], color=delta_colors[delta_str])
ax.plot([1, 2], [1, 1], 'k-', alpha=0.5, lw=4)
ax.set_ylim(0, 2)
ax.set_xlim(0, 40.0)
Ris.append(params['Ri'])
deltas.append(params['delta'])
ekes.append( (eke.mean(axis=-1).mean(axis=-1)/norm).max() )
mkes.append( (mke.mean(axis=-1).mean(axis=-1)).max() )
tkes.append( (tke.mean(axis=-1).mean(axis=-1)).max() )
# # 7 days energy
# ekes.append( (eke.mean(axis=-1).mean(axis=-1)/norm)[tidx] )
# mkes.append( (mke.mean(axis=-1).mean(axis=-1))[tidx] )
# tkes.append( (tke.mean(axis=-1).mean(axis=-1))[tidx] )
norms.append( norm )
if ax == ax_crnr:
ax.set_xlabel('Time [days]')
ax.set_ylabel('Normalized energy')
else:
# ax.set_xticklabels([])
ax.set_yticklabels([])
omega_ref = np.polyval(omega_poly, ref_delta) # non-dim
omega_dim_ref = 86400.0 * omega_ref * ref_f / np.sqrt(ref_Ri) # rad/days
ax_all_normed.plot([ref_timescale*omega_dim_ref, ref_timescale*omega_dim_ref], [0, 0.8], '--k', lw=3)
ax_all_normed.set_ylim(0, 0.8)
ax_all_normed.set_xlabel('Normalized time')
ax_all_normed.set_ylabel('Normalized eke')
ax_all_unnormed.set_ylim(0, 0.8)
ax_all_unnormed.set_xlabel('Time [days]')
ax_all_unnormed.set_ylabel('Normalized eke')
fig_all.subplots_adjust(left=0.1, bottom=0.095, right=0.95, top=0.95,
wspace=0.05, hspace=0.3)
Ri = np.array(Ris)
delta = np.array(deltas)
eke = np.array(ekes)
S = delta/np.sqrt(Ri)
p = np.polyfit(np.log(S), eke, 1)
# fig = plt.figure()
# ax = fig.add_subplot(111)
# ax.semilogx(S, eke, 'ko')
# logS = np.linspace(-5, 0, 50)
# ax.plot(np.exp(logS), p[0]*logS + p[1], 'k--')
# ax.set_xlim(1e-2, 1)
# ax.set_ylim(0, 2)
# r = np.corrcoef(np.log(S), eke)[0, 1]
# ax.set_xlabel('S')
# ax.set_ylabel('Normalized eddy kinetic energy')
#
# plt.show()