-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
718 lines (605 loc) · 32.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
from span_utils import decode
import os
from span_predictor import BertSpanPredictor, ElectraSpanPredictor
import numpy as np
import torch
import json
import copy
import multiprocessing as mp
from transformers import BartTokenizer, BartConfig, T5Tokenizer, T5Config, BertConfig, BertTokenizer , ElectraConfig, ElectraTokenizer, ElectraForQuestionAnswering
from transformers import AdamW, get_linear_schedule_with_warmup
from data3 import QAData
from bart import MyBart
from T5 import MyT5
from tqdm import tqdm
from span_utils import normalize_answer
from collections import defaultdict
def generic_generate(model, device, input_ids, attention_mask, num_beams, max_output_length):
""" A function help preprocess generate input devices and postprocess dictionary outputs.
It helps reducing GPU memory usage and supports multiprocessing parallel.
Args:
model ([type]): LM that has been moved to device.
device ([type]): device for input_ids and attention_mask
input_ids ([type]): generate arg
attention_mask ([type]): generate arg
num_beams ([type]): generate arg
max_output_length ([type]): generate arg
Returns:
[tuple]: (key:device, value: (outputs list, normalized probabilities list) )
"""
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
outputs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
num_beams=num_beams,
max_length=max_output_length,
early_stopping=True,
use_cache=True,
return_dict_in_generate=True,
output_scores=True
)
# transfer output to device cpu, also might save some GPU memory
outputs, sequences_scores = post_process_dict_outputs(outputs, "cpu")
normed_probs = None
normed_probs = []
for i in range(outputs.shape[0]):
# it's size of bs (selects the beam with the highest score)
log_scores = sequences_scores
normed_prob = (torch.exp(log_scores[i]) /
torch.exp(log_scores).sum()).item()
normed_probs.append(normed_prob)
# NOTE: as of now, sequence scores is not used. We might need to use hidden states later though
return (device, (outputs.tolist(), normed_probs))
def parallel_decode(output, dev_data, index, q_id=None):
pred = dev_data.decode(output)
return (index, (q_id, pred))
def parallel_eval(eval_fn, partial_preds, partial_data):
pass
def run(args, logger):
# load tokenizer
if args.predict_type.lower() == "spanseqgen":
if args.model.lower() == "bart":
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
elif args.model.lower() == "t5":
tokenizer = T5Tokenizer.from_pretrained("t5-base")
# tokenizer = T5TokenizerFast.from_pretrained("t5-base")
else:
print("wrong model argument")
exit()
elif args.predict_type.lower() == "spanextraction":
if args.model.lower() == "bert":
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
elif args.model.lower() == "electra":
tokenizer = ElectraTokenizer.from_pretrained('google/electra-large-discriminator')
else:
logger.warn(
"Please specify correct model for span extraction. e.g. bert")
else:
print("wrong argument: ", args.predict_type.lower())
exit()
if args.model.lower() == "bart" or args.model.lower() == "t5":
logger.info("Add <sep> token into tokenizer")
# add extra token for BART
tokenizer.add_tokens(["<SEP>"], special_tokens=True)
if tokenizer.bos_token_id == None:
tokenizer.add_tokens(["<s>"], special_tokens=True)
if args.do_tokenize:
# during the process train_data will be overwritten, so memory will be collected
for k in range(5, 15):
for l in range(600, 800, 50):
print("Evaluate passage coverage for top ", k,
"passages for max input sequence length ", l)
args.top_k_passages = k
args.max_input_length = l
train_data = QAData(logger, args, args.train_file, "train")
if args.do_predict:
dev_data = QAData(logger, args, args.predict_file, "test")
else:
dev_data = QAData(logger, args, args.predict_file, "dev")
print("Pre-process training data")
train_data.load_dataset(tokenizer)
train_data.load_dataloader()
print("Pre-process development data")
dev_data.load_dataset(tokenizer)
dev_data.load_dataloader()
print("finished tokenization")
exit()
else:
answer_type = "span" if "extraction" in args.predict_type.lower() else "seq"
logger.info(f"answer type is {answer_type}")
if args.do_predict:
dev_data = QAData(logger, args, args.predict_file, "test")
dev_data_prefix = "[TEST DATA]\t"
else:
# temp for memory trick
# dev_data = QAData(logger, args, args.predict_file, "dev")
# dev_data.load_dataset(tokenizer)
# dev_data.load_dataloader()
train_data = QAData(logger, args, args.train_file, "train")
dev_data = QAData(logger, args, args.predict_file, "dev")
train_data_prefix = "[TRAIN DATA]\t"
logger.info(train_data_prefix + "Start loading...")
logger.info(train_data_prefix + f"batch size {args.train_batch_size}")
train_data.load_dataset(tokenizer)
train_data.load_dataloader()
dev_data_prefix = "[DEV DATA]\t"
logger.info(dev_data_prefix +"Start loading...")
logger.info(dev_data_prefix + f"batch size {args.predict_batch_size}")
dev_data.load_dataset(tokenizer)
dev_data.load_dataloader()
model_prefix = f"[{args.model.upper()}]\t"
if args.checkpoint is not None:
if args.checkpoint.endswith(".pt"): # load old type of checkpoint
logger.info(f"{model_prefix}Load old model with pt data format")
def convert_to_single_gpu(state_dict):
def _convert(key):
if key.startswith('module.'):
return key[7:]
return key
return {_convert(key): value for key, value in state_dict.items()}
if args.model.lower() == "bart":
# TODO: add flag that when there is more specialized token,
# NOTE: it serves a template to
# config = BartConfig.from_pretrained("bart-large")
# config.gradient_checkpointing = args.gradient_cp
config = BartConfig.from_pretrained("facebook/bart-large")
logger.warn("Due to the previously added token, here I manually add one on config vocab size")
# NOTE: old checkpoint doesn't save config, so it needs reload from scratch and modify
config.vocab_size += 1
config.gradient_checkpointing = args.gradient_cp
model = MyBart.from_pretrained(None,
state_dict=convert_to_single_gpu(torch.load(args.checkpoint)), config = config)
elif args.model.lower() == "t5":
config = BartConfig.from_pretrained("t5-base")
config.vocab_size += 2
config.gradient_checkpointing = args.gradient_cp
model = MyT5.from_pretrained(None,
state_dict=convert_to_single_gpu(torch.load(args.checkpoint)), config = config)
logger.warn(
"Due to the previously added token, here I manually add one on config vocab size")
elif args.model.lower() == "bert":
model = BertSpanPredictor.from_pretrained(
"bert-base-uncased", state_dict=convert_to_single_gpu(torch.load(args.checkpoint)))
elif args.model.lower() == "electra":
# config = ElectraConfig.from_pretrained(args.checkpoint)
# config.gradient_checkpointing = args.gradient_cp
# model = ElectraSpanPredictor.from_pretrained(args.checkpoint)
model = ElectraSpanPredictor.from_pretrained(
"electra-large-uncased", state_dict=convert_to_single_gpu(torch.load(args.checkpoint)))
else:
print("wrong model argument: ", args.model.lower())
exit()
else: # load the new type of checkpoint
logger.info(f"{model_prefix}Load checkpoint model")
if args.model.lower() == "bart":
# TODO: add flag that when there is more specialized token,
# NOTE: it serves a template to
config = BartConfig.from_pretrained(args.checkpoint)
config.gradient_checkpointing = args.gradient_cp
# the other way is to save a bart-large file with resize token size
model = MyBart.from_pretrained(args.checkpoint, config = config)
elif args.model.lower() == "t5":
config = T5Config.from_pretrained(args.checkpoint)
if args.gradient_cp:
logger.warn("T5 gradient checkpoint hasn't been implemented")
args.gradient_cp = False
config.gradient_checkpointing = args.gradient_cp
model = MyT5.from_pretrained(args.checkpoint, config = config)
elif args.model.lower() == "bert":
config = BertConfig.from_pretrained(args.checkpoint)
config.gradient_checkpointing = args.gradient_cp
model = BertSpanPredictor.from_pretrained(args.checkpoint, config = config)
elif args.model.lower() == "electra":
config = ElectraConfig.from_pretrained(args.checkpoint)
config.gradient_checkpointing = args.gradient_cp
model = ElectraSpanPredictor.from_pretrained(args.checkpoint, config = config)
else:
print("wrong model argument: ", args.model.lower())
exit()
is_ambig = False
if args.fine_tune:
is_ambig = True
if args.model.lower() == "bert" or args.model.lower() == "electra":
model.set_ambig(args.threshold) # as it only affects generating, we set the class variable here
else:
model.set_ambig()
if args.do_train:
if args.checkpoint is None:
logger.info(f"{model_prefix}gradient checkpoint mode: {args.gradient_cp}")
logger.info(f"{model_prefix}Loading pre-trained model ")
# spanseqgen
if args.predict_type.lower() == "spanseqgen":
if args.model.lower() == "bart":
config = BartConfig.from_pretrained("facebook/bart-large")
config.gradient_checkpointing = args.gradient_cp
config.vocab_size += 1
model = MyBart.from_pretrained("facebook/bart-large", config=config)
# The new vector is added at the end of the embedding matrix
# set it to Randomly generated matrix
# as there is new token <SEP>
model.resize_token_embeddings(len(tokenizer))
# model.shared.weight[-1, :] = torch.zeros([model.config.hidden_size])
elif args.model.lower() == "t5":
# model = MyT5.from_pretrained('t5-large')
config = T5Config.from_pretrained('t5-base')
config.vocab_size += 2
config.gradient_checkpointing = args.gradient_cp
model = MyT5.from_pretrained('t5-base')
model.resize_token_embeddings(len(tokenizer))
else:
print("wrong model argument")
exit()
# span extraction
elif args.predict_type.lower() == "spanextraction":
logger.info(f"{model_prefix}model enabled for span predictions")
# TODO: add more variants span extraction pre-trained model
if args.model.lower() == "bert":
config = BertConfig.from_pretrained("bert-base-uncased")
config.gradient_checkpointing = args.gradient_cp
model = BertSpanPredictor.from_pretrained(
"bert-base-uncased", config=config)
elif args.model.lower() == "electra":
config = ElectraConfig.from_pretrained("google/electra-large-discriminator")
config.gradient_checkpointing = args.gradient_cp
model = ElectraSpanPredictor.from_pretrained(
'google/electra-large-discriminator', config = config)
else:
logger.warn("Wrong model argument")
exit()
# data parallel
if args.device == "cuda" and torch.cuda.device_count() > 1:
if args.n_gpu == 1:
logger.warning("User specified one gpu but there are actually {}, it has been corrected".format(
torch.cuda.device_count()))
args.n_gpu = torch.cuda.device_count()
model = torch.nn.DataParallel(model)
logger.info(f"{model_prefix}data parallelism status: True")
# model parallism
if args.device != "cuda":
if args.model_parallel == True:
logger.warn("only one gpu is enabled so model parallel is now disabled")
args.model_parallel = False
if args.model_parallel and hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
model.is_model_parallel = True
else:
model.is_model_parallel = False
logger.info(f"{model_prefix}model parallelism status: {model.is_model_parallel}")
model.to(torch.device(args.device))
# training schedule and optimizer
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(
nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=100000)
# start trianing
train(args, logger, model, train_data, dev_data, optimizer, scheduler)
if args.do_predict:
logger.info(f"[{args.model}] start prediction")
model.eval()
model = model.to(torch.device(args.device))
ems = inference(args, model, dev_data, args.predict_type,
device=args.device, is_ambig = is_ambig, save_predictions=True)
logger.info("%s on %s data: %.2f" %
(dev_data.metric, dev_data.data_type, np.mean(ems)*100))
def train(args, logger, model, train_data, dev_data, optimizer, scheduler):
model.train()
global_step = 0
train_losses = []
epoch_losses = dict()
epoch_ems = dict()
best_accuracy = -1
stop_training = False
# reload some training status if
if args.fine_tune:
assert args.checkpoint != None, "assert fine-tuning must have pre-trained model"
if args.checkpoint is not None:
if args.fine_tune:
logger.info("Load previous model and start fine tuning on ambig dataset")
logger.info(f"Augument {args.augment_k_times} times Ambig Questions")
if args.augment_k_times != "varied":
if args.augment_k_times.isdigit():
args.augment_k_times = int(args.augment_k_times)
else:
raise NotImplementedError()
else:
logger.info("Not continue fine tuning on Ambig, loading previous checkpoint stat and model")
with open(os.path.join(args.output_dir, 'checkpoint_stat.json'), "r") as fp:
checkpoint_stat = json.load(fp)
start_epoch = checkpoint_stat["best_epoch"]
best_accuracy = checkpoint_stat["best_em_accuracy"]
global_step = checkpoint_stat["global_step"]
logger.info(f"load checkpoint model successfully")
logger.info(
f"previous best model achieved {best_accuracy} at global_step {global_step} and epoch {start_epoch} ")
# new start global step
global_step += args.eval_period
checkpoint_stat = dict()
logger.info(f"[{args.model}] Start training!")
epoch_range = range(int(args.start_epoch), int(args.num_train_epochs))
epoch_range = tqdm(epoch_range) if args.verbose else epoch_range
wait_step = 0
for epoch in epoch_range:
if args.verbose:
logger.info(f"[{args.model}]\t epoch: {epoch}")
for batch in tqdm(train_data.dataloader) if args.verbose else train_data.dataloader:
global_step += 1
batch = [b.to(args.device) for b in batch]
if args.predict_type.lower() == "spanseqgen":
loss = model(input_ids=batch[0], attention_mask=batch[1],
decoder_input_ids=batch[2], decoder_attention_mask=batch[3],
is_training=True)
elif args.predict_type.lower() == "spanextraction":
loss = model(input_ids=batch[0], attention_mask=batch[1],
token_type_ids=batch[2],
start_positions=batch[3], end_positions=batch[4], answer_mask=batch[5],
is_training=True)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if torch.isnan(loss).data:
logger.info("Stop training because loss=%s" % (loss.data))
stop_training = True
break
train_losses.append(loss.detach().cpu())
loss.backward()
if global_step % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
optimizer.step() # We have accumulated enought gradients
scheduler.step()
model.zero_grad()
# eval
if global_step % args.eval_period == 0:
model.eval()
logger.info(f"Start evaluating at global step {global_step}")
model = get_model(model, args.device).to("cpu")
del batch
# it will clean two things.
# 1. Model parameters(after model is moved to cpu)
# 2. gradients info during training
assert args.gradient_accumulation_steps == 1, "it's safe to empty cache only when gradient_accumulation_steps is one"
torch.cuda.empty_cache()
curr_em = inference(args, model, dev_data,
args.predict_type, device=args.device, is_ambig=model.is_ambig, save_predictions=True)
logger.info("Step %d Train loss %.2f %s %.2f%% on epoch=%d" % (
global_step,
np.mean(train_losses),
dev_data.metric,
curr_em*100,
epoch))
epoch_ems[epoch] = str(curr_em*100)
train_losses = []
if best_accuracy < curr_em:
# get_model(model, args.device).save_pretrained(args.output_dir)
model.save_pretrained(
args.output_dir)
checkpoint_stat["best_epoch"] = epoch
checkpoint_stat["best_em_accuracy"] = curr_em
checkpoint_stat["global_step"] = global_step
with open(os.path.join(args.output_dir, 'checkpoint_stat.json'), "w") as fp:
json.dump(checkpoint_stat, fp)
logger.info("Saving model with best %s: %.2f%% -> %.2f%% on epoch=%d, global_step=%d" %
(dev_data.metric, best_accuracy*100.0, curr_em*100.0, epoch, global_step))
best_accuracy = curr_em
wait_step = 0
stop_training = False
else:
wait_step += 1
if wait_step >= args.wait_step:
stop_training = True
break
model = torch.nn.DataParallel(model)
model = model.to(torch.device(args.device))
model.train()
epoch_losses[epoch] = str(np.mean(train_losses))
with open(os.path.join(args.output_dir, f"{args.model}_bs{args.train_batch_size}.json"), "w") as fp:
json.dump(epoch_losses, fp)
json.dump(epoch_ems, fp)
if stop_training:
break
def get_model(model, device):
return model.module if device=="cuda" else model
def post_process_dict_outputs(outputs, device):
""" Get sequences and scores from dictionary output by generate function, and clean cuda memory
Args:
outputs ([type]): [description]
device ([type]): [description]
Returns:
[type]: [description]
"""
sequences_scores = outputs.sequences_scores.to(device)
sequences = outputs.sequences.to(device)
del outputs
torch.cuda.empty_cache()
return sequences, sequences_scores
def inference(args, model, dev_data, predict_type, device="cuda", is_ambig = False, save_predictions=False):
predictions = []
bos_token_id = dev_data.tokenizer.bos_token_id
if predict_type.lower() == "spanseqgen":
prediction_dict = defaultdict(lambda :[]) # key: q_id value: [ (pred, pred_score) ]
model = model.to("cpu") # it will be moved to corresponding cuda devices later
torch.cuda.empty_cache()
if args.n_gpu > 1:
model_on_devices = [copy.deepcopy(model).to(i) for i in range(args.n_gpu)]
if args.pdb_debug:
break_i = 5
print("set break_i = 5 to reduce the number of iterations")
# generate and encode outputs
for i, batch in tqdm(enumerate(dev_data.dataloader)) if args.verbose else enumerate(dev_data.dataloader):
if args.pdb_debug:
if i == break_i:
break
bs = len(batch[0])
# move model to device 0 and device 1
# move input_ids, attention mask to device 0 and device 1
# concatenate outputs
input_ids = batch[0]
attention_mask = batch[1]
question_ids = batch[2]
decoder_input_ids = batch[3]
# generate outputs
if args.n_gpu > 1:
pool = mp.Pool(30)
devices = list(range(args.n_gpu))
bs_per_device = bs // args.n_gpu
# pre-process parallel fn input
splitted_input_ids = []
splitted_attention_mask = []
for i in range(args.n_gpu):
if i == args.n_gpu - 1:
splitted_input_ids.append(input_ids[i*bs_per_device:])
splitted_attention_mask.append(
attention_mask[i*bs_per_device: ])
break
splitted_input_ids.append(input_ids[i*bs_per_device: (i+1)*bs_per_device] )
splitted_attention_mask.append(
attention_mask[i*bs_per_device: (i+1)*bs_per_device])
parallel_gen_input = zip(model_on_devices, devices, splitted_input_ids, splitted_attention_mask,
[dev_data.args.num_beams]*args.n_gpu, [dev_data.args.max_output_length]*args.n_gpu)
indexed_outputs = dict(pool.starmap(
generic_generate, parallel_gen_input))
outputs = []
normed_probs = []
for i in range(args.n_gpu):
outputs.extend(indexed_outputs[i][0])
normed_probs.extend(indexed_outputs[i][1])
pool.close()
pool.join()
else:
model = model.to(device)
_, (outputs, normed_probs) = generic_generate(model, device, input_ids,
attention_mask, dev_data.args.num_beams, dev_data.args.max_output_length)
assert len(outputs) == len(question_ids) == len(
attention_mask), (len(outputs), len(question_ids), len(attention_mask))
# encode outputs
if not args.passage_clustering:
preds = dev_data.batch_decode(outputs)
for (i, pred) in enumerate(preds):
print("check prediction: ", pred)
predictions.extend(preds)
else:
preds = dev_data.batch_decode(outputs)
answers = dev_data.batch_decode(decoder_input_ids)
import pdb; pdb.set_trace()
assert len(preds) == len(answers), (len(preds), len(answers))
for (idx, q_id) in enumerate(question_ids):
try:
print(f"check prediction(pred_score) {q_id} ({normed_probs[idx]}): ",
preds[idx], "||| answer: ", answers[idx])
prediction_dict[q_id].append(
(preds[idx], normed_probs[idx], answers[idx]))
except IndexError:
import pdb; pdb.set_trace()
# NOTE: haven't implemented normed_probs here, also the thought of second gen is kinda abandoned
if args.second_generation:
# second generation
if args.passage_clustering and not args.is_contrastive:
# remove empty string answers
for q_id in prediction_dict.keys():
prediction_dict[q_id] = [
a for a in prediction_dict[q_id] if len(a.strip()) != 0]
# iterate all data again
for i, batch in tqdm(enumerate(dev_data.dataloader)) if args.verbose else enumerate(dev_data.dataloader):
input_ids = batch[0]
attention_mask = batch[1]
question_ids = batch[2]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
indices = []
qp_check_d = defaultdict(lambda :False)
for i, (input_, q_id) in enumerate(zip(input_ids, question_ids)):
if len(prediction_dict[q_id]) == 0 and not qp_check_d[q_id]:
indices.append(i)
qp_check_d[q_id] = True
indices = torch.LongTensor(indices)
if len(indices) == 0:
continue
# import pdb; pdb.set_trace()
new_input_ids = input_ids[indices, :].to(device)
new_attention_mask = attention_mask[indices, :].to(device)
model = model.to(device)
new_question_ids = []
for idx in indices:
new_question_ids.append(question_ids[idx])
new_question_ids = tuple(new_question_ids)
# disallow generate empty strings will prevent
# check if empty string id and sep token id is the same
new_outputs = model.generate(input_ids=new_input_ids,
attention_mask=new_attention_mask,
num_beams=dev_data.args.num_beams,
max_length=dev_data.args.max_output_length,
early_stopping=True,
bad_words_ids = [[2,0,0,1437, 2], [2,0,0,0]]
) # min_len =4 is about two words
# filtered input ids
for input_, output, q_id in zip(new_input_ids, new_outputs, new_question_ids):
pred = dev_data.decode(output)
print(f"check new prediction for question {q_id}: ", pred)
prediction_dict[q_id].append(pred)
# PC eval: after all predictions
if args.passage_clustering:
print('check length of prediction dict keys')
all_pred_scores = []
# concatenate all answers for one question
for i in prediction_dict.keys():
preds_w_scores = prediction_dict[i]
preds = [pws[0] for pws in preds_w_scores]
pred_scores = [pws[1] for pws in preds_w_scores]
answers = [pws[2] for pws in preds_w_scores]
all_pred_scores.extend(pred_scores)
preds = [normalize_answer(p) for p in preds if len(p) != 0]
assert len(preds) == len(pred_scores), "length limit might eliminate some predictions, pls check"
pred_acc_score_d = defaultdict(lambda :0) # key: pred value: pred_score
# 1. aggregate same answer's probs
for (p, ps) in zip(preds, pred_scores):
pred_acc_score_d[p] += ps
# 2. set a threshold to filter answers
if args.pdb_debug:
import pdb; pdb.set_trace()
print("check confidence score and gold answers")
threshold = 0.7
preds = [p for p in preds if pred_acc_score_d[p] > threshold]
# 3. but keep at least one answer for one question if all answers are below the threshold
if len(preds) == 0:
preds = [sorted(pred_acc_score_d.items(), key = lambda item:item[1], reverse=True)[0][0]] # sort in a decreasing order + index on the first key
# this score is final score of the concatenated answer and it shows the confidence of all filtered answers
pred_score = sum(pred_scores)
preds = "<sep>".join(preds)
prediction_dict[i] = (preds, pred_score)
predictions = prediction_dict # rename for convenince
avg_pred_score = sum(all_pred_scores)/len(all_pred_scores)
import pdb; pdb.set_trace()
print("check pred scores ")
print("check predict dict")
# another mothod is decode after all outputs
# we don't enforce ordered prediction from each question
# we decode and concatenate it based on question id (dictionary)
# finally
elif predict_type.lower() == "spanextraction":
all_start_logits = []
all_end_logits = []
all_input_data = []
for i, batch in tqdm(enumerate(dev_data.dataloader)) if args.verbose else enumerate(dev_data.dataloader):
batch = [b.to(device) for b in batch]
qa_outputs = model(input_ids=batch[0], attention_mask=batch[1],
token_type_ids=batch[2], inputs_embeds=None,
start_positions=batch[3], end_positions=batch[4], answer_mask=batch[5],
is_training=False)
start_logits, end_logits = qa_outputs.start_logits, qa_outputs.end_logits
start_logits = start_logits.detach().cpu().numpy().tolist()
end_logits = end_logits.detach().cpu().numpy().tolist()
input_ids = batch[0].detach().cpu().numpy().tolist()
all_input_data += input_ids
all_start_logits += start_logits
all_end_logits += end_logits
predictions = decode(all_start_logits, all_end_logits, all_input_data, dev_data.tokenizer,
args.top_k_answers, max_answer_length=args.max_answer_length, threshold = args.threshold, is_ambig = is_ambig)
if save_predictions:
dev_data.save_predictions(predictions)
return np.mean(dev_data.evaluate(predictions))