-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnewCV.py
210 lines (158 loc) · 5.91 KB
/
newCV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import cv2
import cv2 as cv
import math
import numpy as np
cap = cv.VideoCapture(3)
debug = False
def closest_col(hsv_col):
close_col = hsv_col[:3]
smallest_diff = float('inf')
for name, col in COLORS.items():
new = sum((a - b)**2 for a, b in zip(col[:3], hsv_col[:3]))
if new < smallest_diff:
smallest_diff = new
close_name = name
close_col = col
return (close_name, close_col)
COLORS = {"WHITE": [200, 200, 200],
"BLUE": [125, 76, 22],
"YELLOW": [200, 200, 200],
"GREEN": [62, 87, 15],
"ORANGE": [200, 200, 200],
"RED": [53, 53, 140]}
# COLORS = {"WHITE": [200, 200, 200],
# "BLUE": [125, 76, 22],
# "YELLOW": [85, 153, 169],
# "GREEN": [62, 87, 15],
# "ORANGE": [70, 210, 200],
# "RED": [53, 53, 140]}
faces = [[], [], [], [], [], []]
keys = ["WHITE", "BLUE", "RED", "YELLOW", "GREEN", "ORANGE"]
kk = ["WHITE", "BLUE", "RED", "WHITE", "GREEN", "WHITE"]
request_confirm = False
index = 0
while index != 6:
# Capture frame-by-frame
ret, frame = cap.read()
# Display the resulting frame
cv.imshow('Main', frame)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
canny = cv2.Canny(blurred, 20, 40)
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(canny, kernel, iterations=2)
img2, contours, hierarchy = cv2.findContours(
dilated.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
rects = []
rectcentroid = []
maxcont = []
maxsize = 0
for c in contours:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.04 * peri, True)
maxlen = -1
maxdiff = 0
ld = []
if len(approx) == 4:
for k in range(3):
ld.append(math.hypot(
approx[k][0][0] - approx[k + 1][0][0], approx[k][0][1] - approx[k + 1][0][1]))
ld.append(math.hypot(
approx[0][0][0] - approx[3][0][0], approx[0][0][1] - approx[3][0][1]))
maxdiff = max([abs(ld[x] - ld[x + 1])
for x in range(3)] + [abs(ld[0] - ld[2])])
M = cv.moments(c)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
if maxdiff < 30:
if 8000 > cv2.contourArea(c) > 2000:
rectcentroid.append((cx, cy))
rects.append(approx)
tremove = []
for j in range(len(rects)):
for k in range(j + 1, len(rects)):
if cv2.pointPolygonTest(rects[j], rectcentroid[k], True) > 0:
if cv2.contourArea(rects[j]) > cv2.contourArea(rects[k]):
tremove.append(rects[j])
else:
tremove.append(rects[k])
for r in tremove:
for k in range(len(rects)):
if np.array_equal(r, rects[k]):
del rects[k]
break
rectcentroid = []
if len(rects) == 9:
for n, k in enumerate(rects):
M = cv.moments(k)
cx = int(M['m10'] / M['m00'])
cy = int(M['m01'] / M['m00'])
rectcentroid.append([cx, cy, k])
sorted_centroids = []
# sorted_x = sorted(rectcentroid, key=sort_by_x)
# for centroids in [sorted_x[i:i + 3] for i in range(0, len(rectcentroid), 3)]:
# sorted_y = sorted(centroids, key=sort_by_y)
# sorted_centroids.extend(sorted_y)
#
# for n, s in enumerate(sorted_centroids):
# cv.putText(frame, str(n), tuple(s[:2]), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
cube = [[], [], []]
miny = 99999
maxy = 0
for n, c in enumerate(rectcentroid):
miny = min(miny, c[1])
maxy = max(maxy, c[1])
for n, c in enumerate(rectcentroid):
if abs(miny - c[1]) < 30:
cube[0].append(c)
elif abs(maxy - c[1]) < 30:
cube[2].append(c)
else:
cube[1].append(c)
for n, row in enumerate(cube):
cube[n] = sorted(row)
colors = []
for y in range(len(cube)):
for x in range(len(cube[y])):
try:
cv.putText(frame, str(y * 3 + x), tuple(cube[y][x][:2]), cv.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 255), 2)
mask = np.zeros(frame.shape[:2], np.uint8)
cv.drawContours(mask, [cube[y][x][2]], 0, 255, -1)
mean_val = cv.mean(frame, mask=mask)
color = mean_val
colors.append(color)
cv.drawContours(
frame, [cube[y][x][2]], -1, tuple(color), 2)
cube[y][x] = closest_col(color)[0]
except:
cube[y][x] = []
match_complete = True
if debug:
print("new set")
for i, color in enumerate(colors):
print(i, color, closest_col(color))
for y in range(len(cube)):
for x in range(len(cube[y])):
if not cube[y][x]:
match_complete = False
if not match_complete:
break
if match_complete:
if cube[1][1] == kk[index]:
if request_confirm and cube == faces[index]:
index += 1
request_confirm = False
if index < 6:
print(keys[index - 1] + " done! " + "Please turn to " + keys[index])
else:
faces[index] = cube
request_confirm = True
rects = np.array(rects)
cv2.imshow('contours', frame)
if cv.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()
print(faces)