forked from PaulStoffregen/MotionCal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrawdata.c
353 lines (324 loc) · 8.66 KB
/
rawdata.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#include "imuread.h"
static int rawcount=OVERSAMPLE_RATIO;
static AccelSensor_t accel;
static MagSensor_t mag;
static GyroSensor_t gyro;
static float cal_data_sent[19];
static int cal_confirm_needed=0;
void raw_data_reset(void)
{
rawcount = OVERSAMPLE_RATIO;
fusion_init();
memset(&magcal, 0, sizeof(magcal));
magcal.V[2] = 80.0f; // initial guess
magcal.invW[0][0] = 1.0f;
magcal.invW[1][1] = 1.0f;
magcal.invW[2][2] = 1.0f;
magcal.FitError = 100.0f;
magcal.FitErrorAge = 100.0f;
magcal.B = 50.0f;
}
static int choose_discard_magcal(void)
{
int32_t rawx, rawy, rawz;
int32_t dx, dy, dz;
float x, y, z;
uint64_t distsq, minsum=0xFFFFFFFFFFFFFFFFull;
static int runcount=0;
int i, j, minindex=0;
Point_t point;
float gaps, field, error, errormax;
// When enough data is collected (gaps error is low), assume we
// have a pretty good coverage and the field stregth is known.
gaps = quality_surface_gap_error();
if (gaps < 25.0f) {
// occasionally look for points farthest from average field strength
// always rate limit assumption-based data purging, but allow the
// rate to increase as the angular coverage improves.
if (gaps < 1.0f) gaps = 1.0f;
if (++runcount > (int)(gaps * 10.0f)) {
j = MAGBUFFSIZE;
errormax = 0.0f;
for (i=0; i < MAGBUFFSIZE; i++) {
rawx = magcal.BpFast[0][i];
rawy = magcal.BpFast[1][i];
rawz = magcal.BpFast[2][i];
apply_calibration(rawx, rawy, rawz, &point);
x = point.x;
y = point.y;
z = point.z;
field = sqrtf(x * x + y * y + z * z);
// if magcal.B is bad, things could go horribly wrong
error = fabsf(field - magcal.B);
if (error > errormax) {
errormax = error;
j = i;
}
}
runcount = 0;
if (j < MAGBUFFSIZE) {
//printf("worst error at %d\n", j);
return j;
}
}
} else {
runcount = 0;
}
// When solid info isn't availabe, find 2 points closest to each other,
// and randomly discard one. When we don't have good coverage, this
// approach tends to add points into previously unmeasured areas while
// discarding info from areas with highly redundant info.
for (i=0; i < MAGBUFFSIZE; i++) {
for (j=i+1; j < MAGBUFFSIZE; j++) {
dx = magcal.BpFast[0][i] - magcal.BpFast[0][j];
dy = magcal.BpFast[1][i] - magcal.BpFast[1][j];
dz = magcal.BpFast[2][i] - magcal.BpFast[2][j];
distsq = (int64_t)dx * (int64_t)dx;
distsq += (int64_t)dy * (int64_t)dy;
distsq += (int64_t)dz * (int64_t)dz;
if (distsq < minsum) {
minsum = distsq;
minindex = (random() & 1) ? i : j;
}
}
}
return minindex;
}
static void add_magcal_data(const int16_t *data)
{
int i;
// first look for an unused caldata slot
for (i=0; i < MAGBUFFSIZE; i++) {
if (!magcal.valid[i]) break;
}
// If the buffer is full, we must choose which old data to discard.
// We must choose wisely! Throwing away the wrong data could prevent
// collecting enough data distributed across the entire 3D angular
// range, preventing a decent cal from ever happening at all. Making
// any assumption about good vs bad data is particularly risky,
// because being wrong could cause an unstable feedback loop where
// bad data leads to wrong decisions which leads to even worse data.
// But if done well, purging bad data has massive potential to
// improve results. The trick is telling the good from the bad while
// still in the process of learning what's good...
if (i >= MAGBUFFSIZE) {
i = choose_discard_magcal();
if (i < 0 || i >= MAGBUFFSIZE) {
i = random() % MAGBUFFSIZE;
}
}
// add it to the cal buffer
magcal.BpFast[0][i] = data[6];
magcal.BpFast[1][i] = data[7];
magcal.BpFast[2][i] = data[8];
magcal.valid[i] = 1;
}
static int is_float_ok(float actual, float expected)
{
float err, maxerr;
err = fabsf(actual - expected);
maxerr = 0.0001f + fabsf(expected) * 0.00003f;
if (err <= maxerr) return 1;
return 0;
}
void cal1_data(const float *data)
{
int i, ok;
if (cal_confirm_needed) {
#if 0
printf("expected cal1: ");
for (i=0; i<10; i++) {
printf(" %.5f,", cal_data_sent[i]);
}
printf("\ngot cal1_data: ");
for (i=0; i<10; i++) {
printf(" %.5f,", data[i]);
}
printf("\n");
#endif
ok = 1;
for (i=0; i<10; i++) {
if (!is_float_ok(data[i], cal_data_sent[i])) ok = 0;
}
if (ok) {
cal_confirm_needed &= ~1; // got cal1 confirm
if (cal_confirm_needed == 0) {
calibration_confirmed();
}
}
}
}
void cal2_data(const float *data)
{
int i, ok;
if (cal_confirm_needed) {
#if 0
printf("expected cal2: ");
for (i=0; i<9; i++) {
printf(" %.5f,", cal_data_sent[i+10]);
}
printf("\ngot cal2_data: ");
for (i=0; i<9; i++) {
printf(" %.5f,", data[i]);
}
printf("\n");
#endif
ok = 1;
for (i=0; i<9; i++) {
if (!is_float_ok(data[i], cal_data_sent[i+10])) ok = 0;
}
if (ok) {
cal_confirm_needed &= ~2; // got cal2 confirm
if (cal_confirm_needed == 0) {
calibration_confirmed();
}
}
}
}
void raw_data(const int16_t *data)
{
static int force_orientation_counter=0;
float x, y, z, ratio, magdiff;
Point_t point;
add_magcal_data(data);
x = magcal.V[0];
y = magcal.V[1];
z = magcal.V[2];
if (MagCal_Run()) {
x -= magcal.V[0];
y -= magcal.V[1];
z -= magcal.V[2];
magdiff = sqrtf(x * x + y * y + z * z);
//printf("magdiff = %.2f\n", magdiff);
if (magdiff > 0.8f) {
fusion_init();
rawcount = OVERSAMPLE_RATIO;
force_orientation_counter = 240;
}
}
if (force_orientation_counter > 0) {
if (--force_orientation_counter == 0) {
//printf("delayed forcible orientation reset\n");
fusion_init();
rawcount = OVERSAMPLE_RATIO;
}
}
if (rawcount >= OVERSAMPLE_RATIO) {
memset(&accel, 0, sizeof(accel));
memset(&mag, 0, sizeof(mag));
memset(&gyro, 0, sizeof(gyro));
rawcount = 0;
}
x = (float)data[0] * G_PER_COUNT;
y = (float)data[1] * G_PER_COUNT;
z = (float)data[2] * G_PER_COUNT;
accel.GpFast[0] = x;
accel.GpFast[1] = y;
accel.GpFast[2] = z;
accel.Gp[0] += x;
accel.Gp[1] += y;
accel.Gp[2] += z;
x = (float)data[3] * DEG_PER_SEC_PER_COUNT;
y = (float)data[4] * DEG_PER_SEC_PER_COUNT;
z = (float)data[5] * DEG_PER_SEC_PER_COUNT;
gyro.Yp[0] += x;
gyro.Yp[1] += y;
gyro.Yp[2] += z;
gyro.YpFast[rawcount][0] = x;
gyro.YpFast[rawcount][1] = y;
gyro.YpFast[rawcount][2] = z;
apply_calibration(data[6], data[7], data[8], &point);
mag.BcFast[0] = point.x;
mag.BcFast[1] = point.y;
mag.BcFast[2] = point.z;
mag.Bc[0] += point.x;
mag.Bc[1] += point.y;
mag.Bc[2] += point.z;
rawcount++;
if (rawcount >= OVERSAMPLE_RATIO) {
ratio = 1.0f / (float)OVERSAMPLE_RATIO;
accel.Gp[0] *= ratio;
accel.Gp[1] *= ratio;
accel.Gp[2] *= ratio;
gyro.Yp[0] *= ratio;
gyro.Yp[1] *= ratio;
gyro.Yp[2] *= ratio;
mag.Bc[0] *= ratio;
mag.Bc[1] *= ratio;
mag.Bc[2] *= ratio;
fusion_update(&accel, &mag, &gyro, &magcal);
fusion_read(¤t_orientation);
}
}
static uint16_t crc16(uint16_t crc, uint8_t data)
{
unsigned int i;
crc ^= data;
for (i = 0; i < 8; ++i) {
if (crc & 1) {
crc = (crc >> 1) ^ 0xA001;
} else {
crc = (crc >> 1);
}
}
return crc;
}
static uint8_t * copy_lsb_first(uint8_t *dst, float f)
{
union {
float f;
uint32_t n;
} data;
data.f = f;
*dst++ = data.n;
*dst++ = data.n >> 8;
*dst++ = data.n >> 16;
*dst++ = data.n >> 24;
return dst;
}
int send_calibration(void)
{
uint8_t *p, buf[68];
uint16_t crc;
int i;
p = buf;
*p++ = 117; // 2 byte signature
*p++ = 84;
for (i=0; i < 3; i++) {
p = copy_lsb_first(p, 0.0f); // accelerometer offsets
cal_data_sent[0+i] = 0.0f;
}
for (i=0; i < 3; i++) {
p = copy_lsb_first(p, 0.0f); // gyroscope offsets
cal_data_sent[3+i] = 0.0f;
}
for (i=0; i < 3; i++) {
p = copy_lsb_first(p, magcal.V[i]); // 12 bytes offset/hardiron
cal_data_sent[6+i] = magcal.V[i];
}
p = copy_lsb_first(p, magcal.B); // field strength
p = copy_lsb_first(p, magcal.invW[0][0]); //10
p = copy_lsb_first(p, magcal.invW[1][1]); //11
p = copy_lsb_first(p, magcal.invW[2][2]); //12
p = copy_lsb_first(p, magcal.invW[0][1]); //13
p = copy_lsb_first(p, magcal.invW[0][2]); //14
p = copy_lsb_first(p, magcal.invW[1][2]); //15
cal_data_sent[9] = magcal.B;
cal_data_sent[10] = magcal.invW[0][0];
cal_data_sent[11] = magcal.invW[0][1];
cal_data_sent[12] = magcal.invW[0][2];
cal_data_sent[13] = magcal.invW[1][0];
cal_data_sent[14] = magcal.invW[1][1];
cal_data_sent[15] = magcal.invW[1][2];
cal_data_sent[16] = magcal.invW[2][0];
cal_data_sent[17] = magcal.invW[2][1];
cal_data_sent[18] = magcal.invW[2][2];
cal_confirm_needed = 3;
crc = 0xFFFF;
for (i=0; i < 66; i++) {
crc = crc16(crc, buf[i]);
}
*p++ = crc; // 2 byte crc check
*p++ = crc >> 8;
return write_serial_data(buf, 68);
}