-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreating_training_files.py
131 lines (108 loc) · 3.29 KB
/
creating_training_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from __future__ import print_function
import numpy as np
import re
import glob
from keras.utils.data_utils import get_file
from keras.layers.embeddings import Embedding
from keras import layers
from keras.layers import recurrent
from keras.models import Model
from keras.preprocessing.sequence import pad_sequences
import os
from keras.models import model_from_json
EMBED_HIDDEN_SIZE = 64
NO_OF_CONV_FILTERS = 256
NO_OF_CONV_SIZE = 3
API_SEQUENCE_MAX_LEN = 600
NUMBER_OF_API_CALLS = 6
NUMBER_OF_TRAINING_EXAMPLES_PER_BATCH = 4
all_api_calls_file = open('mixed_dataset/all_api_calls.txt')
all_api_calls = []
for lines in all_api_calls_file.readlines():
all_api_calls.append(lines[:-1])
api_index = dict((c,i+1) for i,c in enumerate(all_api_calls))
training_file_calls = open('training_file_calls','w')
training_file_index = open('training_file_index','w')
print('API Index')
#print(api_index)
all_training_samples = glob.glob('mixed_dataset/*.out')
file_names = []
'''
for i in all_training_samples:
#print(i)
components = i.split('/')
name = components[1].split('.')[0]
#print(name)
file_names.append()
'''
processed_training_examples = []
processing_count = 0
for i in all_training_samples:
command = 'find '+i+' -name "*.smali" -exec cat {} \; | grep /*Manager | grep ";->" | grep \(.*\) | grep -v "Layout" | sort | uniq > feature_extractor.txt'
os.system(command)
components = i.split('/')
name = components[1].split('.')[0]
file_names.append(name)
xlist = []
calls_str = name + '-'
index_str = name + '-'
processed_training_examples_files = open('feature_extractor.txt','r')
for lines in processed_training_examples_files.readlines():
#xlist.append(lines[:-1])
if lines[:-1] in all_api_calls:
xlist.append(api_index[lines[:-1]])
else:
xlist.append(0)
calls_str = calls_str + lines[:-1]+','
#print(xlist)
if len(xlist) >= API_SEQUENCE_MAX_LEN:
xlist = xlist[:API_SEQUENCE_MAX_LEN]
else:
for i in range(API_SEQUENCE_MAX_LEN-len(xlist)):
xlist.append(0)
for m in xlist:
index_str = index_str + str(m) + ','
index_str = index_str + '\n'
calls_str = calls_str + '\n'
#for j in xlist:
training_file_calls.write(calls_str)
training_file_index.write(index_str)
#processed_training_examples.append(xlist)
processed_training_examples_files.close()
print('processing count'+str(processing_count))
processing_count = processing_count + 1
#if processing_count == 3:
# break
training_file_calls.close()
training_file_index.close()
'''
#print('Processed Training Examples')
#print(processed_training_examples)
#print(len(processed_training_examples))
processing_count = 0
processed_and_indexed_training_examples = []
for i in processed_training_examples:
xlist = []
name = file_names[processing_count]
index_str = name + '-'
for j in i :
if j in all_api_calls:
xlist.append(api_index[j])
else:
xlist.append(0)
#print(len(xlist))
if len(xlist) >= API_SEQUENCE_MAX_LEN:
xlist = xlist[:API_SEQUENCE_MAX_LEN]
else:
for i in range(API_SEQUENCE_MAX_LEN-len(xlist)):
xlist.append(0)
#processed_and_indexed_training_examples.append(xlist)
for m in xlist:
index_str = index_str + str(m) + ','
index_str = index_str + '\n'
training_file_index.write(index_str)
print('Indexing Count'+str(processing_count))
processing_count = processing_count + 1
#if processing_count == 3:
# break
'''