-
Notifications
You must be signed in to change notification settings - Fork 74
/
utils.py
112 lines (90 loc) · 3.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os, sys, time
import numpy as np
import random
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class RecorderMeter(object):
"""Computes and stores the minimum loss value and its epoch index"""
def __init__(self, total_epoch):
self.reset(total_epoch)
def reset(self, total_epoch):
assert total_epoch > 0
self.total_epoch = total_epoch
self.current_epoch = 0
self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
self.epoch_losses = self.epoch_losses - 1
self.epoch_accuracy= np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val]
self.epoch_accuracy= self.epoch_accuracy
def update(self, idx, train_loss, train_acc, val_loss, val_acc):
assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format(self.total_epoch, idx)
self.epoch_losses [idx, 0] = train_loss
self.epoch_losses [idx, 1] = val_loss
self.epoch_accuracy[idx, 0] = train_acc
self.epoch_accuracy[idx, 1] = val_acc
self.current_epoch = idx + 1
return self.max_accuracy(False) == val_acc
def max_accuracy(self, istrain):
if self.current_epoch <= 0: return 0
if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max()
else: return self.epoch_accuracy[:self.current_epoch, 1].max()
def plot_curve(self, save_path):
title = 'the accuracy/loss curve of train/val'
dpi = 80
width, height = 1200, 800
legend_fontsize = 10
scale_distance = 48.8
figsize = width / float(dpi), height / float(dpi)
fig = plt.figure(figsize=figsize)
x_axis = np.array([i for i in range(self.total_epoch)]) # epochs
y_axis = np.zeros(self.total_epoch)
plt.xlim(0, self.total_epoch)
plt.ylim(0, 100)
interval_y = 5
interval_x = 5
plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
plt.yticks(np.arange(0, 100 + interval_y, interval_y))
plt.grid()
plt.title(title, fontsize=20)
plt.xlabel('the training epoch', fontsize=16)
plt.ylabel('accuracy', fontsize=16)
y_axis[:] = self.epoch_accuracy[:, 0]
plt.plot(x_axis, y_axis, color='g', linestyle='-', label='train-accuracy', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_accuracy[:, 1]
plt.plot(x_axis, y_axis, color='y', linestyle='-', label='valid-accuracy', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 0]
plt.plot(x_axis, y_axis*50, color='g', linestyle=':', label='train-loss-x50', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
y_axis[:] = self.epoch_losses[:, 1]
plt.plot(x_axis, y_axis*50, color='y', linestyle=':', label='valid-loss-x50', lw=2)
plt.legend(loc=4, fontsize=legend_fontsize)
if save_path is not None:
fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
print ('---- save figure {} into {}'.format(title, save_path))
plt.close(fig)
def time_string():
ISOTIMEFORMAT='%Y-%m-%d %X'
string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
return string
def convert_secs2time(epoch_time):
need_hour = int(epoch_time / 3600)
need_mins = int((epoch_time - 3600*need_hour) / 60)
need_secs = int(epoch_time - 3600*need_hour - 60*need_mins)
return need_hour, need_mins, need_secs
def time_file_str():
ISOTIMEFORMAT='%Y-%m-%d'
string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) ))
return string + '-{}'.format(random.randint(1, 10000))