forked from WorldHealthOrganization/epi50-vaccine-impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.R
659 lines (527 loc) · 19.1 KB
/
prepare.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
###########################################################
# PREPARE
#
# Prepare various data sources for use throughout the analysis.
# The idea is that this process needs to be done only once,
# and that the prepared inputs are streamlined for quick loading.
#
###########################################################
# ---------------------------------------------------------
# Parent function for preparing model inputs from various data sources
# ---------------------------------------------------------
run_prepare = function() {
# Only continue if specified by run_module
if (!is.element(1, o$run_module)) return()
message("* Preparing input data")
# Convert config yaml files to datatables
prepare_config_tables()
# Streamline VIMC impact estimates for quick loading
prepare_vimc_estimates()
# Prepare GBD estimates of deaths for non-VIMC pathogens
prepare_gbd_estimates()
# Parse vaccine efficacy profile for non-VIMC pathogens
prepare_vaccine_efficacy()
# Prepare country income status classification over time
prepare_income_status()
# Prepare demography-related estimates from WPP
prepare_demography()
# Prepare all covariates for regression modelling
prepare_covariates() # See covariates.R
# Prepare historical vaccine coverage
prepare_coverage() # See coverage.R
}
# ---------------------------------------------------------
# Convert config yaml files to datatables
# ---------------------------------------------------------
prepare_config_tables = function() {
# NOTE: Convert from yaml (/config) to rds (/tables) for fast loading
# List of config yaml files to convert
config_files = o$pth$config %>%
list.files(pattern = ".+\\.yaml$") %>%
str_remove(".yaml$") %>%
setdiff("general")
# Iterate through these files
for (file in config_files) {
# Load the yaml file
yaml_file = paste0("config/", file, ".yaml")
yaml_data = read_yaml(yaml_file)$table
# Convert to datatable
config_dt = yaml_data %>%
lapply(as.data.table) %>%
rbindlist(fill = TRUE)
# Save in tables cache
save_table(config_dt, file)
}
}
# ---------------------------------------------------------
# Streamline VIMC impact estimates for quick loading
# ---------------------------------------------------------
prepare_vimc_estimates = function() {
message(" > VIMC estimates")
# All diseases to load VIMC outcomes for
vimc_info = table("d_v_a") %>%
filter(source == "vimc") %>%
select(disease) %>%
unique() %>%
left_join(y = table("disease_name"),
by = "disease")
# Initiate list to store outcomes
vimc_list = list()
# Iterate through diseases
for (i in seq_row(vimc_info)) {
# Disease ID and associated full name
id = vimc_info[i]$disease
name = vimc_info[i]$disease_name
message(" - ", name)
# Load VIMC impact estimates for this disease
vimc_list[[id]] = read_rds("vimc", id) %>%
lazy_dt() %>%
pivot_longer(cols = ends_with("impact"),
names_to = "vaccine") %>%
replace_na(list(value = 0)) %>%
# Intrepet disease, vaccine, and activity...
mutate(disease = tolower(disease),
vaccine = str_remove(vaccine, "_impact"),
activity = ifelse(
test = vaccine %in% c("routine", "campaign"),
yes = vaccine,
no = "routine")) %>%
# Tidy up...
select(disease, vaccine, activity, country,
year, age, metric = outcome, value) %>%
as.data.table()
}
# Squash results into single datatable
vimc_dt = rbindlist(vimc_list) %>%
# Interpret activity...
mutate(vaccine = ifelse(
test = vaccine %in% c("routine", "campaign"),
yes = disease,
no = vaccine)) %>%
# Deal with rubella special case...
mutate(is_all = vaccine == "combined",
vaccine = ifelse(is_all, disease, vaccine),
activity = ifelse(is_all, "all", activity)) %>%
# Wide format of metrics...
mutate(metric = paste1(metric, "averted")) %>%
pivot_wider(names_from = metric) %>%
# Append d-v-a ID...
left_join(y = table("d_v_a"),
by = c("disease", "vaccine", "activity")) %>%
# Tidy up...
select(d_v_a_id, country, year, age,
deaths_averted, dalys_averted) %>%
arrange(d_v_a_id, country, year, age) %>%
as.data.table()
# Save in tables cache
save_table(vimc_dt, "vimc_estimates")
}
# ---------------------------------------------------------
# Prepare GBD estimates of deaths for non-modelled pathogens
# ---------------------------------------------------------
prepare_gbd_estimates = function() {
message(" > GBD estimates")
# Dictionary of GBD disease names
gbd_dict = table("gbd_dict") %>%
rename(name = gbd_name,
value = disease) %>%
pivot_wider() %>%
as.list()
# ---- Age mapping ----
# Parse specific age strings
age_dict = c(
"<28 days" = "-1",
"28..364 days" = "0..1",
"95+" = "95..100")
# Age bins in data before transformation
age_bins = c(-1, 0, 1, seq(5, 95, by = 5))
# Construct age datatable to expand age bins to single years
age_dt = data.table(age = c(-1, o$ages)) %>%
mutate(age_bin = ifelse(age %in% age_bins, age, NA)) %>%
fill(age_bin, .direction = "down") %>%
group_by(age_bin) %>%
add_count(age_bin) %>%
ungroup() %>%
as.data.table()
# ---- Load and format data ----
message(" - Loading data")
# Initiate list to store burden results
burden_list = list()
# Iterate through burden metrics to load
for (metric in o$metrics) {
# File path to GBD burden file
file = file.path(
paste0(o$pth$input, "gbd"),
paste0("gbd21_", metric, ".rds"))
# Load GBD burden estimates for relevant diseases
burden_list[[metric]] = read_rds(file) %>%
# Parse diseases...
mutate(disease = recode(cause, !!!gbd_dict)) %>%
filter(disease %in% table("d_v_a")$disease) %>%
# Parse age groups...
mutate(age = str_replace(age, "-", ".."),
age = recode(age, !!!age_dict),
age_bin = str_extract(age, "^-*[0-9]+"),
age_bin = as.numeric(age_bin)) %>%
# Reduce down to variables of interest...
select(disease, country, year, age_bin, value) %>%
arrange(disease, country, year, age_bin) %>%
mutate(metric = !!metric)
}
# Squash then split by disease-metric-age
gbd_list = burden_list %>%
rbindlist() %>%
split(f = list(
.$disease,
.$metric,
.$age_bin))
# Remove any trivial splits
gbd_list[lapply(gbd_list, nrow) == 0] = NULL
# ---- Extrapolate recent years ----
message(" - Extrapolating trends")
# Function for extrapolating trends for post-2019 period
extrap_fn = function(data) {
# Constant method...
if (o$gbd_extrap == "constant") {
# Expand temporal scope and extrapolate
extrap_data = data %>%
# Expand out to recent years without data...
complete(country, disease, age_bin, metric,
year = min(year) : max(o$years)) %>%
# Extrapolate most recent value...
fill(value, .direction = "down") %>%
# filter(!is.na(value)) %>%
select(all_names(data)) %>%
as.data.table()
}
# Using time series method...
if (o$gbd_extrap == "trend") {
# Identifiers of this split
id_dt = data %>%
select(disease, metric, age_bin) %>%
unique()
# Expand temporal scope and extrapolate
extrap_data = data %>%
# Expand out to recent years without data...
complete(country, year = min(year) : max(o$years)) %>%
# Extrapolate recent trends...
as_tsibble(index = year,
key = country) %>%
interp_ts_trend() %>%
as.data.table() %>%
# Tidy up...
cbind(id_dt) %>%
select(all_names(data))
}
return(extrap_data)
}
# Interpolate metrics in parallel
if (o$parallel$interp)
extrap_list = mclapply(
X = gbd_list,
FUN = extrap_fn,
mc.cores = o$n_cores,
mc.preschedule = FALSE)
# Interpolate metrics consecutively
if (!o$parallel$interp)
extrap_list = lapply(
X = gbd_list,
FUN = extrap_fn)
# Squash everything back together
extrap_dt = extrap_list %>%
rbindlist() %>%
arrange(metric, disease, country, year, age_bin)
# ---- Expand to singel age bins ----
message(" - Expanding age groups")
# Expand to all ages
gbd_dt = extrap_dt %>%
full_join(y = age_dt,
by = "age_bin",
relationship = "many-to-many") %>%
mutate(value = value / n) %>%
select(disease, country, year, age, value, metric)
# Squash into single datatable
gbd_dt %>%
mutate(metric = paste1(metric, "disease")) %>%
# Pivot metrics to wide format...
pivot_wider(names_from = metric) %>%
replace_na(list(
deaths_disease = 0,
dalys_disease = 0)) %>%
arrange(disease, country, year, age) %>%
as.data.table() %>%
# Save in tables cache
save_table("gbd_estimates")
# Plot GBD death estimates by age
plot_gbd_estimates()
}
# ---------------------------------------------------------
# Parse vaccine efficacy profile for non-modelled pathogens
# ---------------------------------------------------------
prepare_vaccine_efficacy = function() {
message(" > Vaccine efficacy")
# ---- Optimisation functions ----
# Function to determine optimal immunity profiles parameters
optimisation_fn = function(vaccine) {
# Efficacy details (incl data) for this vaccine
efficacy_info = table("vaccine_efficacy") %>%
filter(vaccine == !!vaccine)
# Extract the data points (efficacy, year)
data = efficacy_info %>%
pull(data) %>%
unlist() %>%
matrix(nrow = 2) %>%
t()
# Extract user-defined functional form for vaccine efficacy
fn = eval_str(unique(efficacy_info$fn))
# Number of function input arguments (without default values)
#
# NOTE: These are the set of values to be optimised
n_args = sum(!unlist(lapply(formals(fn), is.numeric)))
# Repeat call to optimisation algorithm multiple times
optim_list = lapply(
X = 1 : o$n_optim,
FUN = asd_fn,
data = data,
fn = fn,
n_args = n_args)
# Extract parameters from best fitting result
optim_pars = optim_list %>%
rbindlist() %>%
pivot_wider() %>%
slice_min(y, n = 1, with_ties = FALSE) %>%
select(-id, -y) %>%
unlist() %>%
unname() %>%
as.list()
# Convert into datatable
pars_dt = optim_pars %>%
as_named_dt(letters[seq_along(optim_pars)]) %>%
mutate(vaccine = vaccine) %>%
pivot_longer(cols = -vaccine,
names_to = "var") %>%
as.data.table()
# Evaluate function using optimal parameters
profile = do.call(fn, optim_pars)
# Form profile into a datatable
profile_dt = data.table(
vaccine = vaccine,
var = t,
value = profile)
# Bind optimal parameters and optimal profile for single output
output_dt = rbind(pars_dt, profile_dt)
return(output_dt)
}
# Objective algorithm
asd_fn = function(i, data, fn, n_args) {
# Reset random number generator
set.seed(i)
# Fit all required parameters to the data available
optim = asd(
fn = obj_fn,
x0 = runif(n_args),
lb = 1e-6,
ub = 1e6,
iters = 1e3,
args = list(
data = data,
fn = fn,
n_args = n_args))
# Convert result to datatable
result = optim[qc(x, y)] %>%
unlist() %>%
enframe() %>%
mutate(id = i) %>%
as.data.table()
return(result)
}
# Objective function to minimise
obj_fn = function(x, args) {
# Evalulate immunity function
y = do.call(args$fn, as.list(x))
# Data points we want to hit
data_x = args$data[, 2] + 1
data_y = args$data[, 1]
# Calculate sum of squared error
obj_val = sum((y[data_x] - data_y) ^ 2)
return(list(y = obj_val))
}
# ---- Perform optimisation for each vaccine ----
# Points at which to evaluate efficacy functions
t = seq_along(o$years) - 1 # Immunity in the years following vaccination
# Vaccines we want efficacy profiles for (all static modelled vaccines)
vaccines = table("d_v_a")[source == "static", vaccine]
# Apply optimisation to determine optimal immunity parameters
optim_results = vaccines %>%
lapply(optimisation_fn) %>%
rbindlist()
# Extract optimal profiles
profile_dt = optim_results %>%
filter(grepl("^[0-9]+$", var)) %>%
mutate(time = as.integer(var)) %>%
left_join(y = table("d_v_a"),
by = "vaccine") %>%
select(disease, vaccine, time, profile = value)
# Extract optimal parameters
pars_dt = optim_results %>%
filter(grepl("^[a-z]+$", var)) %>%
rename(parameter = var)
# Save both in tables cache
save_table(profile_dt, "vaccine_efficacy_profiles")
save_table(pars_dt, "vaccine_efficacy_parameters")
# Plot these profiles
plot_vaccine_efficacy()
}
# ---------------------------------------------------------
# Prepare country income status classification over time
# ---------------------------------------------------------
prepare_income_status = function() {
message(" > Income status")
# Path to data file
#
# SOURCE: https://datacatalogfiles.worldbank.org/ddh-published/0037712/
# DR0090755/CLASS.xlsx?versionId=2023-11-16T18:35:30.5758473Z
#
# Alternatively, download 'Historical classification by income' Excel file from:
# datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
file = paste0(o$pth$input, "worldbank_income_status.csv")
# Full country-year combination
full_dt = expand_grid(
country = all_countries(),
year = o$years) %>%
as.data.table()
# Load and format country income status over time
income_dt = fread(file, header = TRUE) %>%
# Countries of interest...
filter(country %in% all_countries()) %>%
select(-country_name) %>%
# Convert to tidy format...
pivot_longer(cols = -country,
names_to = "year",
values_to = "income") %>%
# Country with all full country-year combo...
mutate(year = as.integer(year)) %>%
full_join(y = full_dt,
by = c("country", "year")) %>%
arrange(country, year) %>%
# Fill missing data with pro/preceding value...
mutate(income = ifelse(income == "", NA, income)) %>%
group_by(country) %>%
fill(income, .direction = "downup") %>%
ungroup() %>%
# Niue and Cook Islands missing, both are HIC...
replace_na(list(income = "H")) %>%
mutate(income = paste0(tolower(income), "ic")) %>%
as.data.table()
# Save in tables cache
save_table(income_dt, "income_status")
}
# ---------------------------------------------------------
# Prepare demography-related estimates from WPP
# ---------------------------------------------------------
prepare_demography = function() {
message(" > Demography data")
# Function to apply element-wise scaler to data
scaler_fn = function(m) {
# Population scaling: by country, year, and age
if (grepl("pop", m$scale))
scaler_dt = setnames(
x = table("wpp_pop"),
old = "pop",
new = "scaler")
# Numeric values: simple repitition
if (grepl("^[0-9,\\.]+$", m$scale))
scaler_dt = expand_grid(
country = all_countries(),
year = o$years,
age = if (m$age) o$ages else NA,
scaler = as.numeric(m$scale)) %>%
as.data.table()
return(scaler_dt)
}
# Details of WPP metrics to load
wpp_metrics = table("wpp_dict") %>%
mutate(metric = fct_inorder(metric)) %>%
split(.$metric)
# Iterate through metrics to load
for (metric in names(wpp_metrics)) {
m = as.list(wpp_metrics[[metric]])
message(" - ", metric)
# Past and future in separate data sets
if (m$proj == TRUE) {
# Age-disaggregation specified in data set file name
age = ifelse(m$age, "Age", "")
# Names of WPP2022 data files to load
past = paste0(m$file, age, o$pop_bin, "dt")
future = paste0(m$file, "proj", age, o$pop_bin, "dt")
# Load pop data from WPP github package
data_list = data_package(past, future, package = "wpp2022")
}
# Past and future combined into single data set
if (m$proj == FALSE) {
# Name of WPP2022 data file - history and projection in one
all_time = paste0(m$file, o$pop_bin, "dt")
# Load data from WPP github package
data_list = data_package(all_time, package = "wpp2022")
}
# Combine (extended) past and future data
data_dt = rbindlist(data_list, fill = TRUE) %>%
{if (!m$age) mutate(., age = NA) else .} %>%
# Select countries of interest...
inner_join(y = table("country"),
by = "country_code") %>%
select(country, year, age, value = !!m$var) %>%
# Shift year by one (see github.com/PPgp/wpp2022 for details)...
mutate(year = as.integer(year) + 1) %>%
filter(year %in% o$years) %>%
# Scale metrics...
left_join(y = scaler_fn(m),
by = c("country", "year", "age")) %>%
mutate(value = value * scaler) %>%
select(-scaler) %>%
# Tidy up...
rename(!!metric := value) %>%
arrange(country, year, age)
# Save in tables cache
save_table(data_dt, paste1("wpp", metric))
}
}
# ---------------------------------------------------------
# Simple wrapper to load all countries
# ---------------------------------------------------------
all_countries = function(as_dt = FALSE) {
# Pull all countries defined in config file
countries = table("country")$country
# Convert to simple datatable if desired
if (as_dt == TRUE)
countries = data.table(country = countries)
return(countries)
}
# ---------------------------------------------------------
# Simple wrapper to load all regions
# ---------------------------------------------------------
all_regions = function() {
# Pull all regions defined in config file
regions = table("region_dict")$region
return(regions)
}
# ---------------------------------------------------------
# Save table in cache directory for quick loading
# ---------------------------------------------------------
save_table = function(x, table) {
# Save table in tables cache directory
save_rds(x, "tables", table, "table")
}
# ---------------------------------------------------------
# Load and return cached datatable
# ---------------------------------------------------------
table = function(table) {
# Construct file path
file = paste0(o$pth$tables, table, "_table.rds")
# Throw an error if this file doesn't exist
if (!file.exists(file))
stop("Table ", table, " has not been cached")
# Load rds file
y = read_rds(file)
return(y)
}