forked from ashattock/drivers-vaccine-impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.R
332 lines (267 loc) · 10.2 KB
/
prepare.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
###########################################################
# PREPARE
#
# Prepare various data sources for use throughout the analysis.
# The idea is that this process needs to be done only once,
# and that the prepared inputs are streamlined for quick loading.
#
###########################################################
# ---------------------------------------------------------
# Parent function for preparing model inputs from various data sources
# ---------------------------------------------------------
run_prepare = function() {
# Only continue if specified by run_module
if (!is.element(1, o$run_module)) return()
message("* Preparing input data")
# Convert config yaml files to datatables
prepare_config_tables()
# Streamline VIMC impact estimates for quick loading
prepare_vimc_estimates()
# Prepare country income status classification over time
prepare_income_status()
# Prepare demography-related estimates from WPP
prepare_demography()
# Prepare all covariates for regression modelling
prepare_covariates() # See covariates.R
# Prepare historical vaccine coverage
prepare_coverage() # See coverage.R
}
# ---------------------------------------------------------
# Convert config yaml files to datatables
# ---------------------------------------------------------
prepare_config_tables = function() {
# NOTE: Convert from yaml (/config) to rds (/tables) for fast loading
# List of config yaml files to convert
config_files = o$pth$config %>%
list.files(pattern = ".+\\.yaml$") %>%
str_remove(".yaml$") %>%
setdiff("general")
# Iterate through these files
for (file in config_files) {
# Load the yaml file
yaml_file = paste0("config/", file, ".yaml")
yaml_data = read_yaml(yaml_file)$table
# Convert to datatable
config_dt = yaml_data %>%
lapply(as.data.table) %>%
rbindlist(fill = TRUE)
# Save in tables cache
save_table(config_dt, file)
}
}
# ---------------------------------------------------------
# Streamline VIMC impact estimates for quick loading
# ---------------------------------------------------------
prepare_vimc_estimates = function() {
message(" > VIMC estimates")
# All diseases to load VIMC outcomes for
vimc_info = table("d_v_a") %>%
filter(source == "vimc") %>%
select(disease) %>%
unique() %>%
left_join(y = table("disease_name"),
by = "disease")
# Initiate list to store outcomes
vimc_list = list()
# Iterate through diseases
for (i in seq_row(vimc_info)) {
# Disease ID and associated full name
id = vimc_info[i]$disease
name = vimc_info[i]$disease_name
message(" - ", name)
# Load VIMC impact estimates for this disease
vimc_list[[id]] = read_rds("vimc", id) %>%
lazy_dt() %>%
pivot_longer(cols = ends_with("impact"),
names_to = "vaccine") %>%
replace_na(list(value = 0)) %>%
# Intrepet disease, vaccine, and activity...
mutate(disease = tolower(disease),
vaccine = str_remove(vaccine, "_impact"),
activity = ifelse(
test = vaccine %in% c("routine", "campaign"),
yes = vaccine,
no = "routine")) %>%
# Tidy up...
select(disease, vaccine, activity, country,
year, age, metric = outcome, value) %>%
as.data.table()
}
# Squash results into single datatable
vimc_dt = rbindlist(vimc_list) %>%
# Interpret activity...
mutate(vaccine = ifelse(
test = vaccine %in% c("routine", "campaign"),
yes = disease,
no = vaccine)) %>%
# Deal with rubella special case...
mutate(is_all = vaccine == "combined",
vaccine = ifelse(is_all, disease, vaccine),
activity = ifelse(is_all, "all", activity)) %>%
# Wide format of metrics...
mutate(metric = paste1(metric, "averted")) %>%
pivot_wider(names_from = metric) %>%
# Append d-v-a ID...
left_join(y = table("d_v_a"),
by = c("disease", "vaccine", "activity")) %>%
# Tidy up...
select(d_v_a_id, country, year, age,
deaths_averted, dalys_averted) %>%
arrange(d_v_a_id, country, year, age) %>%
as.data.table()
# Save in tables cache
save_table(vimc_dt, "vimc_estimates")
}
# ---------------------------------------------------------
# Prepare country income status classification over time
# ---------------------------------------------------------
prepare_income_status = function() {
message(" > Income status")
# Path to data file
#
# SOURCE: https://datacatalogfiles.worldbank.org/ddh-published/0037712/
# DR0090755/CLASS.xlsx?versionId=2023-11-16T18:35:30.5758473Z
#
# Alternatively, download 'Historical classification by income' Excel file from:
# datacatalog.worldbank.org/search/dataset/0037712/World-Development-Indicators
file = paste0(o$pth$input, "worldbank_income_status.csv")
# Full country-year combination
full_dt = expand_grid(
country = all_countries(),
year = o$years) %>%
as.data.table()
# Load and format country income status over time
income_dt = fread(file, header = TRUE) %>%
# Countries of interest...
filter(country %in% all_countries()) %>%
select(-country_name) %>%
# Convert to tidy format...
pivot_longer(cols = -country,
names_to = "year",
values_to = "income") %>%
# Country with all full country-year combo...
mutate(year = as.integer(year)) %>%
full_join(y = full_dt,
by = c("country", "year")) %>%
arrange(country, year) %>%
# Fill missing data with pro/preceding value...
mutate(income = ifelse(income == "", NA, income)) %>%
group_by(country) %>%
fill(income, .direction = "downup") %>%
ungroup() %>%
# Niue and Cook Islands missing, both are HIC...
replace_na(list(income = "H")) %>%
mutate(income = paste0(tolower(income), "ic")) %>%
as.data.table()
# Save in tables cache
save_table(income_dt, "income_status")
}
# ---------------------------------------------------------
# Prepare demography-related estimates from WPP
# ---------------------------------------------------------
prepare_demography = function() {
message(" > Demography data")
# Function to apply element-wise scaler to data
scaler_fn = function(m) {
# Population scaling: by country, year, and age
if (grepl("pop", m$scale))
scaler_dt = setnames(
x = table("wpp_pop"),
old = "pop",
new = "scaler")
# Numeric values: simple repitition
if (grepl("^[0-9,\\.]+$", m$scale))
scaler_dt = expand_grid(
country = all_countries(),
year = o$years,
age = if (m$age) o$ages else NA,
scaler = as.numeric(m$scale)) %>%
as.data.table()
return(scaler_dt)
}
# Details of WPP metrics to load
wpp_metrics = table("wpp_dict") %>%
mutate(metric = fct_inorder(metric)) %>%
split(.$metric)
# Iterate through metrics to load
for (metric in names(wpp_metrics)) {
m = as.list(wpp_metrics[[metric]])
message(" - ", metric)
# Past and future in separate data sets
if (m$proj == TRUE) {
# Age-disaggregation specified in data set file name
age = ifelse(m$age, "Age", "")
# Names of WPP2022 data files to load
past = paste0(m$file, age, o$pop_bin, "dt")
future = paste0(m$file, "proj", age, o$pop_bin, "dt")
# Load pop data from WPP github package
data_list = data_package(past, future, package = "wpp2022")
}
# Past and future combined into single data set
if (m$proj == FALSE) {
# Name of WPP2022 data file - history and projection in one
all_time = paste0(m$file, o$pop_bin, "dt")
# Load data from WPP github package
data_list = data_package(all_time, package = "wpp2022")
}
# Combine (extended) past and future data
data_dt = rbindlist(data_list, fill = TRUE) %>%
{if (!m$age) mutate(., age = NA) else .} %>%
# Select countries of interest...
inner_join(y = table("country"),
by = "country_code") %>%
select(country, year, age, value = !!m$var) %>%
# Shift year by one (see github.com/PPgp/wpp2022 for details)...
mutate(year = as.integer(year) + 1) %>%
filter(year %in% o$years) %>%
# Scale metrics...
left_join(y = scaler_fn(m),
by = c("country", "year", "age")) %>%
mutate(value = value * scaler) %>%
select(-scaler) %>%
# Tidy up...
rename(!!metric := value) %>%
arrange(country, year, age)
# Save in tables cache
save_table(data_dt, paste1("wpp", metric))
}
}
# ---------------------------------------------------------
# Simple wrapper to load all countries
# ---------------------------------------------------------
all_countries = function(as_dt = FALSE) {
# Pull all countries defined in config file
countries = table("country")$country
# Convert to simple datatable if desired
if (as_dt == TRUE)
countries = data.table(country = countries)
return(countries)
}
# ---------------------------------------------------------
# Simple wrapper to load all regions
# ---------------------------------------------------------
all_regions = function() {
# Pull all regions defined in config file
regions = table("region_dict")$region
return(regions)
}
# ---------------------------------------------------------
# Save table in cache directory for quick loading
# ---------------------------------------------------------
save_table = function(x, table) {
# Save table in tables cache directory
save_rds(x, "tables", table, "table")
}
# ---------------------------------------------------------
# Load and return cached datatable
# ---------------------------------------------------------
table = function(table) {
# Construct file path
file = paste0(o$pth$tables, table, "_table.rds")
# Throw an error if this file doesn't exist
if (!file.exists(file))
stop("Table ", table, " has not been cached")
# Load rds file
y = read_rds(file)
return(y)
}