forked from neha01/FaceRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideoTester.py
50 lines (33 loc) · 1.4 KB
/
videoTester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import cv2
import numpy as np
import faceRecognition as fr
#This module captures images via webcam and performs face recognition
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
face_recognizer.read('trainingData.yml')#Load saved training data
name = {0 : "Priyanka",1 : "Kangana"}
cap=cv2.VideoCapture(0)
while True:
ret,test_img=cap.read()# captures frame and returns boolean value and captured image
faces_detected,gray_img=fr.faceDetection(test_img)
for (x,y,w,h) in faces_detected:
cv2.rectangle(test_img,(x,y),(x+w,y+h),(255,0,0),thickness=7)
resized_img = cv2.resize(test_img, (1000, 700))
cv2.imshow('face detection Tutorial ',resized_img)
cv2.waitKey(10)
for face in faces_detected:
(x,y,w,h)=face
roi_gray=gray_img[y:y+w, x:x+h]
label,confidence=face_recognizer.predict(roi_gray)#predicting the label of given image
print("confidence:",confidence)
print("label:",label)
fr.draw_rect(test_img,face)
predicted_name=name[label]
if confidence < 39:#If confidence less than 37 then don't print predicted face text on screen
fr.put_text(test_img,predicted_name,x,y)
resized_img = cv2.resize(test_img, (1000, 700))
cv2.imshow('face recognition tutorial ',resized_img)
if cv2.waitKey(10) == ord('q'):#wait until 'q' key is pressed
break
cap.release()
cv2.destroyAllWindows