forked from lmzintgraf/DeepVis-PredDiff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_sampling.py
341 lines (278 loc) · 16.8 KB
/
utils_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# -*- coding: utf-8 -*-
"""
Classes for (1) marginal and (2) conditional sampling for the IMAGENET data.
Note that every sampler has to implement the method
get_samples(sampleIndices, featVect, numSamples)
"""
import numpy as np
import random
import scipy
import os.path
# utilities
import utils_data as utlD
import utils_classifiers as utlC
class marg_sampler_imagenet:
'''
Marginal sampler for image patches
'''
def __init__(self, X, net):
'''
Sampler to draw marginal samples
Input:
X imagenet data from which we will take our samples
for the feature values
'''
# we will use raveled arrays for each image
self.X = X.reshape(X.shape[0],-1)
def get_samples(self, sampleIndices, featVect=None, numSamples=10):
'''
Draw marginal samples for the given indices
Input:
sampleIndices the indices in the image for which we want to
draw samples; is expected to reflect the
indices of the raveled (!) image
featVect (irrelevant because we don't condition on it)
numSamples the number of samples to return
Output:
samples the marginal samples, in a matrix of size
(numSamples)*(number of sampleIndices)
'''
return np.take(self.X[:numSamples], sampleIndices.ravel(), axis=1)
class cond_sampler_imagenet:
'''
Conditional sampler for image patches
using a multivariate Gaussian distribution
'''
def __init__(self, win_size, padding_size, image_dims, netname, num_samples_fit=20000):
'''
Sampler to conditionally sample pixel patches using a gaussian model
Input:
win_size the size (=width=height) of the window which
we want to sample values for
padding_size the padding size that is added on each side of
the window to condition the sampled values on
image_dim the (2d) dimensions of the image, i.e.,
(width, height)
netname the name of the convnet which is being used
(needed because each net preprocesses the data
differently)
num_samples_fit number of samples used to fit the gaussian
'''
# inputs
self.win_size = win_size
self.padding_size = padding_size
self.image_dims = image_dims
self.netname = netname
self.num_samples_fit = num_samples_fit
self.path_folder = './gaussians/'
if not os.path.exists(self.path_folder):
os.makedirs(self.path_folder)
# the whole patch size whose pixel distribution we model with a gaussian
self.patchSize = win_size+2*self.padding_size
# the mean and covariance for the gaussian distribution on the whole patch
self.meanVects, self.covMats = self._get_gauss_params()
# the min/max values for the features seen in the data, so that we can cut off overfloating values
if not os.path.exists(self.path_folder+'{}_minMaxVals.npy'.format(netname)):
save_minmax_values(self.netname)
self.minMaxVals = np.load(self.path_folder+'{}_minMaxVals.npy'.format(netname))
self.location = None
self.dotProdForMean = None
self.cond_cov = None
def _get_gauss_params(self):
'''
Returns the mean and covariance for the gaussian model on the whole
patch (i.e., window to sample plus padding around it)
'''
means = np.zeros((3, self.patchSize*self.patchSize))
covs = np.zeros((3, self.patchSize*self.patchSize, self.patchSize*self.patchSize))
path_mean = self.path_folder+'{}_means{}_indep'.format(self.netname, self.patchSize)
path_cov = self.path_folder+'{}_covs{}_indep'.format(self.netname, self.patchSize)
# check if values are already precomputed and saved; otherwise do so first
if os.path.exists(path_mean+'.npy') and os.path.exists(path_cov+'.npy'):
means = np.load(path_mean+'.npy')
covs = np.load(path_cov+'.npy')
else:
for c in [0,1,2]:
net = utlC.get_caffenet(self.netname)
# get the imagenet data
X, _, _ = utlD.get_imagenet_data(net)
# get samples for fitting the distribution
patchesMat = np.empty((0,self.patchSize*self.patchSize), dtype=np.float)
for i in range(int(self.num_samples_fit/X.shape[0])+1):
# get a random (upper left) position of the patch
idx = random.sample(range((self.image_dims[0]-self.patchSize)*(self.image_dims[1]-self.patchSize)), 1)[0]
idx = np.unravel_index(idx, (self.image_dims[0]-self.patchSize, self.image_dims[1]-self.patchSize))
idx = [idx[0],idx[1]]
# get the patch from all the images in X, from the given channel
patch = X[:,c,idx[0]:idx[0]+self.patchSize,idx[1]:idx[1]+self.patchSize]
patchesMat = np.vstack((patchesMat, patch.reshape((X.shape[0],self.patchSize*self.patchSize))))
# compute the mean and covariance of the collected samples
means[c] = np.mean(patchesMat, axis=0)
covs[c] = np.cov(patchesMat.T)
# save the mean and the covariance
np.save(path_mean, means)
np.save(path_cov, covs)
return means, covs
def _get_cond_params(self, surrPatch, inPatchIdx, channel):
'''
Input:
surrpatch the variables over which we have a distribution
inPatchIdx the index/indices from what we want to sample
Output:
cond_mean the conditional mean of the inner patch,
conditioned on the surrounding pixels
cond_cov the conditional covariance
'''
# get the part of the surrPacth vector which we use to condition the values on
x2 = np.delete(surrPatch, inPatchIdx)
# split the mean vector into mu1 and mu2 (matching what we want to sample/condition on)
mu1 = np.take(self.meanVects[channel], inPatchIdx)
mu2 = np.delete(self.meanVects[channel], inPatchIdx)
path_dotProdForMean = self.path_folder+'{}_cov{}_win{}_dotProdForMean_{}_{}'.format(self.netname, self.patchSize, self.win_size, inPatchIdx[0], inPatchIdx[-1])
# get the dot product for the mean (check if precomputed, otherwise do this first)
if not os.path.exists(path_dotProdForMean+'.npy'):
cov11 = self.covMats[channel][inPatchIdx][:,inPatchIdx]
cov12 = np.delete(self.covMats[channel][inPatchIdx,:], inPatchIdx, axis=1) if np.ndim(inPatchIdx>1) else np.delete(self.covMats[channel][inPatchIdx,:], inPatchIdx)
cov21 = np.delete(self.covMats[channel][:,inPatchIdx], inPatchIdx, axis=0)
cov22 = np.delete(np.delete(self.covMats[channel], inPatchIdx, axis=0), inPatchIdx, axis=1)
# compute the conditional mean and covariance
dotProdForMean = np.dot(cov12,scipy.linalg.inv(cov22))
np.save(path_dotProdForMean, dotProdForMean)
else:
dotProdForMean = np.load(path_dotProdForMean+'.npy')
# with the dotproduct, we can now evaluate the conditional mean
cond_mean = mu1 + np.dot(dotProdForMean, x2-mu2)
path_condCov = self.path_folder+'{}_cov{}_win{}_cond_cov_{}_{}_indep'.format(self.netname, self.patchSize, self.win_size, inPatchIdx[0], inPatchIdx[-1])
# get the conditional covariance
if not os.path.exists(path_condCov+'.npy'):
cov11 = self.covMats[channel][inPatchIdx][:,inPatchIdx]
cov12 = np.delete(self.covMats[channel][inPatchIdx,:], inPatchIdx, axis=1) if np.ndim(inPatchIdx>1) else np.delete(self.covMat[inPatchIdx,:], inPatchIdx)
cov21 = np.delete(self.covMats[channel][:,inPatchIdx], inPatchIdx, axis=0)
cov22 = np.delete(np.delete(self.covMats[channel], inPatchIdx, axis=0), inPatchIdx, axis=1)
cond_cov = cov11 - np.dot(np.dot(cov12,scipy.linalg.inv(cov22)),cov21)
np.save(path_condCov, cond_cov)
else:
cond_cov = np.load(path_condCov+'.npy')
return cond_mean, cond_cov
def _get_surr_patch(self, x, sampleIndices):
'''
Gets a patch around the sampleIndices
Input:
x the whole feature vector
sampleIndices the (raveled) indices for which we want to
get samples
'''
height = self.image_dims[0]
width = self.image_dims[1]
# get the 2d values of the sample indices (since we sample from all color at once channels anyway)
subset3d = np.unravel_index(sampleIndices.ravel(), [3, self.image_dims[0], self.image_dims[1]])
subset2d = [subset3d[1],subset3d[2]]
# we will need this to find the index of the sample inside the surrounding patch
inPatchIdx = np.tile(np.array([i for i in range(self.patchSize*self.patchSize)]),3).reshape(3,self.patchSize,self.patchSize)
# indices of the subset relative to the whole feature map x
upperIdx = subset2d[0][0]
lowerIdx = subset2d[0][-1]
leftIdx = subset2d[1][0]
rightIdx = subset2d[1][-1]
# indices of the subset relative to the surrounding patch
upperIdxPatch = upperIdx
lowerIdxPatch = self.patchSize-(height-lowerIdx)
leftIdxPatch = leftIdx
rightIdxPatch = self.patchSize-(width-rightIdx)
# get a surrounding patch, depending on where the subset lies
# and find the indices inside the patch where the subset is
self.location = None
if leftIdx<self.padding_size and upperIdx<self.padding_size: # upper left
surrPatch = x[:, :self.patchSize, :self.patchSize]
inPatchIdx = inPatchIdx[:, upperIdxPatch:upperIdxPatch+self.win_size, leftIdxPatch:leftIdxPatch+self.win_size]
elif leftIdx<self.padding_size and lowerIdx>(height-1-self.padding_size): # lower left
surrPatch = x[:, -self.patchSize:, :self.patchSize]
inPatchIdx = inPatchIdx[:, lowerIdxPatch-self.win_size+1:lowerIdxPatch+1, leftIdxPatch:leftIdxPatch+self.win_size]
elif rightIdx>(width-1-self.padding_size) and lowerIdx>(height-1-self.padding_size): # lower right
surrPatch = x[:, -self.patchSize:, -self.patchSize:]
inPatchIdx = inPatchIdx[:, lowerIdxPatch-self.win_size+1:lowerIdxPatch+1, rightIdxPatch-self.win_size+1:rightIdxPatch+1]
elif rightIdx>(width-1-self.padding_size) and upperIdx<self.padding_size: # upper right
surrPatch = x[:, :self.patchSize, -self.patchSize:]
inPatchIdx = inPatchIdx[:, upperIdxPatch:upperIdxPatch+self.win_size, rightIdxPatch-self.win_size+1:rightIdxPatch+1]
elif leftIdx<self.padding_size: # left side
surrPatch = x[:, upperIdx-self.padding_size:lowerIdx+self.padding_size+1, :self.patchSize]
inPatchIdx = inPatchIdx[:, self.padding_size:-self.padding_size, leftIdxPatch:leftIdxPatch+self.win_size]
elif rightIdx>(width-1-self.padding_size): # right side
surrPatch = x[:, upperIdx-self.padding_size:lowerIdx+self.padding_size+1, -self.patchSize:]
inPatchIdx = inPatchIdx[:, self.padding_size:-self.padding_size, rightIdxPatch-self.win_size+1:rightIdxPatch+1]
elif upperIdx<self.padding_size: # upper side
surrPatch = x[:, :self.patchSize, leftIdx-self.padding_size:rightIdx+self.padding_size+1]
inPatchIdx = inPatchIdx[:, upperIdxPatch:upperIdxPatch+self.win_size, self.padding_size:-self.padding_size]
elif lowerIdx>(height-1-self.padding_size): # lower side
surrPatch = x[:, -self.patchSize:, leftIdx-self.padding_size:rightIdx+self.padding_size+1]
inPatchIdx = inPatchIdx[:, lowerIdxPatch-self.win_size+1:lowerIdxPatch+1, self.padding_size:-self.padding_size]
else: # somewhere in the middle
self.location = 'middle'
surrPatch = x[:, upperIdx-self.padding_size:lowerIdx+self.padding_size+1, leftIdx-self.padding_size:rightIdx+self.padding_size+1]
inPatchIdx = inPatchIdx[:, self.padding_size:-self.padding_size, self.padding_size:-self.padding_size]
# return the patch and the indices of the subset relative to that
return surrPatch, inPatchIdx
def get_samples(self, sampleIndices, featVect_orig, numSamples=100):
'''
Input featVect the complete feature vector
sampleIndices the raveled(!) indices which we want to sample
numSamples how many samples to draw
'''
featVect = np.copy(featVect_orig)
# to avoid mistakes, remove the feature values of the part that we want to sample
featVect.ravel()[sampleIndices.ravel()] = 0
# reshape inputs if necessary
if np.ndim(sampleIndices)==1:
sampleIndices = sampleIndices.reshape(3, self.win_size, self.win_size)
if np.ndim(featVect)==1:
featVect = featVect.reshape([3, self.image_dims[0], self.image_dims[1]])
# get a patch surrounding the sample indices and the indices relative to that
patch, patchIndices = self._get_surr_patch(featVect, sampleIndices)
# For each color channel, we will conditionally sample pixel
# values from a multivariate distribution
samples = np.zeros((numSamples, 3, self.win_size*self.win_size))
for c in [0,1,2]:
patch_c = patch[c].ravel()
patchIndices_c = patchIndices[c].ravel()
# get the conditional mean and covariance
if self.padding_size==0:
cond_mean = self.meanVects[c]
cond_cov = self.covMat[c]
else:
cond_mean, cond_cov = self._get_cond_params(patch_c, patchIndices_c, c)
# sample from the conditional distribution
# samples = np.random.multivariate_normal(cond_mean, cond_cov, numSamples)
# -- FASTER:
dimGauss = self.win_size*self.win_size
# --- (1) find real matrix A such that AA^T=Sigma ---
A = np.linalg.cholesky(cond_cov)
# --- (2) get (numSamples) samples from a standard normal ---
z = np.random.normal(size=numSamples*dimGauss).reshape(dimGauss,numSamples)
# --- (3) x=mu+Az ---
samples[:,c] = cond_mean[np.newaxis,:] + np.dot(A,z).T
samples = samples.reshape((numSamples, -1))
# get the min/max values for this particular sample
# (since the data is preprocessed these can be different for each pixel!)\
minVals_sample = self.minMaxVals[0].ravel()[sampleIndices.ravel()]
maxVals_sample = self.minMaxVals[1].ravel()[sampleIndices.ravel()]
# clip the values
for i in range(samples.shape[0]):
samples[i][samples[i]<minVals_sample] = minVals_sample[samples[i]<minVals_sample]
samples[i][samples[i]>maxVals_sample] = maxVals_sample[samples[i]>maxVals_sample]
return samples
#%%
def save_minmax_values(netname):
'''
When X.npy is updated, this can be executed to also update the min/max
values of the data (which is being used to cut off the values in the
sampler so that we don't have overflowing values)
'''
net = utlC.get_caffenet(netname)
X, _, _ = utlD.get_imagenet_data(net)
minMaxVals = np.zeros((2,3,X.shape[-1],X.shape[-1]))
minMaxVals[0] = np.min(X,axis=0)
minMaxVals[1] = np.max(X,axis=0)
path_folder = './gaussians/'
if not os.path.exists(path_folder):
os.makedirs(path_folder)
np.save(path_folder+'{}_minMaxVals'.format(netname), minMaxVals)