forked from ali-vilab/dreamtalk
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnodes.py
353 lines (300 loc) · 12.4 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import cv2
import random
import shutil
import subprocess
import torch
import torchaudio
import folder_paths
import numpy as np
from PIL import Image
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from .configs.default import get_cfg_defaults
from .core.networks.diffusion_net import DiffusionNet
from .core.networks.diffusion_util import NoisePredictor, VarianceSchedule
from .core.utils import (
crop_src_image,
get_pose_params,
get_video_style_clip,
get_wav2vec_audio_window,
)
from .generators.utils import get_netG, render_video
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
# Our any instance wants to be a wildcard string
any = AnyType("*")
def get_ext_dir(subpath=None, mkdir=False):
dir = os.path.dirname(__file__)
if subpath is not None:
dir = os.path.join(dir, subpath)
dir = os.path.abspath(dir)
if mkdir and not os.path.exists(dir):
os.makedirs(dir)
return dir
@torch.no_grad()
def get_diff_net(cfg, device):
diff_net = DiffusionNet(
cfg=cfg,
net=NoisePredictor(cfg),
var_sched=VarianceSchedule(
num_steps=cfg.DIFFUSION.SCHEDULE.NUM_STEPS,
beta_1=cfg.DIFFUSION.SCHEDULE.BETA_1,
beta_T=cfg.DIFFUSION.SCHEDULE.BETA_T,
mode=cfg.DIFFUSION.SCHEDULE.MODE,
),
)
checkpoint = torch.load(cfg.INFERENCE.CHECKPOINT, map_location=device)
model_state_dict = checkpoint["model_state_dict"]
diff_net_dict = {
k[9:]: v for k, v in model_state_dict.items() if k[:9] == "diff_net."
}
diff_net.load_state_dict(diff_net_dict, strict=True)
diff_net.eval()
return diff_net
@torch.no_grad()
def inference_one_video(
cfg,
audio_path,
style_clip_path,
pose_path,
output_path,
diff_net,
device,
max_audio_len=None,
sample_method="ddim",
ddim_num_step=10,
):
audio_raw = audio_data = np.load(audio_path)
if max_audio_len is not None:
audio_raw = audio_raw[: max_audio_len * 50]
gen_num_frames = len(audio_raw) // 2
audio_win_array = get_wav2vec_audio_window(
audio_raw,
start_idx=0,
num_frames=gen_num_frames,
win_size=cfg.WIN_SIZE,
)
audio_win = torch.tensor(audio_win_array).to(device)
audio = audio_win.unsqueeze(0)
# the second parameter is "" because of bad interface design...
style_clip_raw, style_pad_mask_raw = get_video_style_clip(
style_clip_path, "", style_max_len=256, start_idx=0
)
style_clip = style_clip_raw.unsqueeze(0).to(device)
style_pad_mask = (
style_pad_mask_raw.unsqueeze(0).to(device)
if style_pad_mask_raw is not None
else None
)
gen_exp_stack = diff_net.sample(
audio,
style_clip,
style_pad_mask,
output_dim=cfg.DATASET.FACE3D_DIM,
use_cf_guidance=cfg.CF_GUIDANCE.INFERENCE,
cfg_scale=cfg.CF_GUIDANCE.SCALE,
sample_method=sample_method,
ddim_num_step=ddim_num_step,
)
gen_exp = gen_exp_stack[0].cpu().numpy()
pose_ext = pose_path[-3:]
pose = None
pose = get_pose_params(pose_path)
# (L, 9)
selected_pose = None
if len(pose) >= len(gen_exp):
selected_pose = pose[: len(gen_exp)]
else:
selected_pose = pose[-1].unsqueeze(0).repeat(len(gen_exp), 1)
selected_pose[: len(pose)] = pose
gen_exp_pose = np.concatenate((gen_exp, selected_pose), axis=1)
np.save(output_path, gen_exp_pose)
return output_path
def cv_frame_generator(video):
try:
video_cap = cv2.VideoCapture(video)
if not video_cap.isOpened():
raise ValueError(f"{video} could not be loaded with cv.")
# set video_cap to look at start_index frame
total_frame_count = 0
total_frames_evaluated = -1
frames_added = 0
base_frame_time = 1/video_cap.get(cv2.CAP_PROP_FPS)
width = video_cap.get(cv2.CAP_PROP_FRAME_WIDTH)
height = video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
prev_frame = None
target_frame_time = base_frame_time
yield (width, height, target_frame_time)
time_offset=target_frame_time - base_frame_time
while video_cap.isOpened():
if time_offset < target_frame_time:
is_returned = video_cap.grab()
# if didn't return frame, video has ended
if not is_returned:
break
time_offset += base_frame_time
if time_offset < target_frame_time:
continue
time_offset -= target_frame_time
# if not at start_index, skip doing anything with frame
total_frame_count += 1
total_frames_evaluated += 1
# opencv loads images in BGR format (yuck), so need to convert to RGB for ComfyUI use
# follow up: can videos ever have an alpha channel?
# To my testing: No. opencv has no support for alpha
unused, frame = video_cap.retrieve()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# convert frame to comfyui's expected format
# TODO: frame contains no exif information. Check if opencv2 has already applied
frame = np.array(frame, dtype=np.float32) / 255.0
if prev_frame is not None:
inp = yield prev_frame
if inp is not None:
#ensure the finally block is called
return
prev_frame = frame
frames_added += 1
if prev_frame is not None:
yield prev_frame
finally:
video_cap.release()
class DreamTalk:
@classmethod
def INPUT_TYPES(s):
audio_extensions = ["wav", "mp3", "flac"]
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1] in audio_extensions):
files.append(f)
style_clip_dir = get_ext_dir('data/style_clip/3DMM')
style_clip_files = [f for f in os.listdir(style_clip_dir) if os.path.isfile(os.path.join(style_clip_dir, f))]
pose_dir = get_ext_dir('data/pose')
pose_files = [f for f in os.listdir(pose_dir) if os.path.isfile(os.path.join(pose_dir, f))]
return {"required": {
"image": ("IMAGE", ),
"audio": (sorted(files), ),
"style_clip": (sorted(style_clip_files), {"default": "M030_front_neutral_level1_001.mat"}),
"pose": (sorted(pose_files), {"default": "RichardShelby_front_neutral_level1_001.mat"}),
"cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"max_gen_len": ("INT", {"default": 1000, "min": 1, "max": 10000000000, "step": 1}),
"img_crop": ("BOOLEAN", {"default": True},),
},}
CATEGORY = "Dreamtalk"
RETURN_TYPES = ("IMAGE", "INT", "INT", )
RETURN_NAMES = ("images", "count", "frame_rate", )
FUNCTION = "inference"
def inference(self, image, audio, style_clip, pose, cfg_scale, max_gen_len, img_crop):
if not torch.cuda.is_available():
raise Exception("CUDA is not available.")
device = torch.device("cuda")
cfg = get_cfg_defaults()
cfg.CF_GUIDANCE.SCALE = cfg_scale
checkpoint_path = os.path.join(get_ext_dir('checkpoints'), 'denoising_network.pth')
if os.path.isfile(checkpoint_path):
cfg.INFERENCE.CHECKPOINT = checkpoint_path
else:
cfg.INFERENCE.CHECKPOINT = os.path.join(folder_paths.models_dir, 'dreamtalk/denoising_network.pth')
renderer_path = os.path.join(get_ext_dir('checkpoints'), 'renderer.pt')
if os.path.isfile(renderer_path):
cfg.INFERENCE.RENDERER = renderer_path
else:
cfg.INFERENCE.RENDERER = os.path.join(folder_paths.models_dir, 'dreamtalk/renderer.pt')
cfg.freeze()
if not os.path.isfile(cfg.INFERENCE.CHECKPOINT):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="cncbec/dreamtalk", allow_patterns=["denoising_network.pth"], local_dir=os.path.dirname(cfg.INFERENCE.CHECKPOINT), local_dir_use_symlinks=False)
if not os.path.isfile(cfg.INFERENCE.RENDERER):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="cncbec/dreamtalk", allow_patterns=["renderer.pt"], local_dir=os.path.dirname(cfg.INFERENCE.RENDERER), local_dir_use_symlinks=False)
output_name = ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5))
tmp_dir = folder_paths.get_temp_directory()
os.makedirs(tmp_dir, exist_ok=True)
# get audio in 16000Hz
wav_path = os.path.join(folder_paths.get_input_directory(), audio)
wav_16k_path = os.path.join(tmp_dir, f"{output_name}_16K.wav")
command = f"ffmpeg -y -i {wav_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {wav_16k_path}"
subprocess.run(command.split())
# get wav2vec feat from audio
wav2vec_processor = Wav2Vec2Processor.from_pretrained(
"jonatasgrosman/wav2vec2-large-xlsr-53-english"
)
wav2vec_model = (
Wav2Vec2Model.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
.eval()
.to(device)
)
speech_array, sampling_rate = torchaudio.load(wav_16k_path)
audio_data = speech_array.squeeze().numpy()
inputs = wav2vec_processor(
audio_data, sampling_rate=16_000, return_tensors="pt", padding=True
)
with torch.no_grad():
audio_embedding = wav2vec_model(
inputs.input_values.to(device), return_dict=False
)[0]
audio_feat_path = os.path.join(tmp_dir, f"{output_name}_wav2vec.npy")
np.save(audio_feat_path, audio_embedding[0].cpu().numpy())
# get src image
for (_, img) in enumerate(image):
img = 255. * img.cpu().numpy()
img = Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
src_img_path = os.path.join(tmp_dir, f"{output_name}_src_img.png")
cropped_img_path = os.path.join(tmp_dir, f"{output_name}_cropped_img.png")
img.save(src_img_path)
break
if img_crop:
crop_src_image(src_img_path, cropped_img_path, 0.4)
else:
shutil.copy(src_img_path, cropped_img_path)
style_clip_path = os.path.join(get_ext_dir('data/style_clip/3DMM'), style_clip)
pose_path = os.path.join(get_ext_dir('data/pose'), pose)
with torch.no_grad():
# get diff model and load checkpoint
diff_net = get_diff_net(cfg, device).to(device)
# generate face motion
face_motion_path = os.path.join(tmp_dir, f"{output_name}_facemotion.npy")
inference_one_video(
cfg,
audio_feat_path,
style_clip_path,
pose_path,
face_motion_path,
diff_net,
device,
max_audio_len=max_gen_len,
)
# get renderer
renderer_path = cfg.INFERENCE.RENDERER
renderer_conf_path = os.path.join(get_ext_dir('generators'), 'renderer_conf.yaml')
renderer = get_netG(renderer_path, device, renderer_conf_path)
# render video
output_video_path = os.path.join(tmp_dir, f"{output_name}.mp4")
render_video(
renderer,
cropped_img_path,
face_motion_path,
wav_16k_path,
output_video_path,
device,
fps=25,
no_move=False,
)
gen = cv_frame_generator(output_video_path)
(width, height, target_frame_time) = next(gen)
width = int(width)
height = int(height)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (height, width, 3)))))
if len(images) == 0:
raise RuntimeError("No frames generated")
return (images, len(images), 25)
NODE_CLASS_MAPPINGS = {
"D_DreamTalk": DreamTalk,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"D_DreamTalk": "Dream Talk",
}