-
Notifications
You must be signed in to change notification settings - Fork 74
/
__init__.py
113 lines (89 loc) · 3.16 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import cv2
import uuid
import os
from model import U2NET
from torch.autograd import Variable
from skimage import io, transform
from PIL import Image
# Get The Current Directory
currentDir = os.path.dirname(__file__)
# Functions:
# Save Results
def save_output(image_name, output_name, pred, d_dir, type):
predict = pred
predict = predict.squeeze()
predict_np = predict.cpu().data.numpy()
im = Image.fromarray(predict_np*255).convert('RGB')
image = io.imread(image_name)
imo = im.resize((image.shape[1], image.shape[0]))
pb_np = np.array(imo)
if type == 'image':
# Make and apply mask
mask = pb_np[:, :, 0]
mask = np.expand_dims(mask, axis=2)
imo = np.concatenate((image, mask), axis=2)
imo = Image.fromarray(imo, 'RGBA')
imo.save(d_dir+output_name)
# Remove Background From Image (Generate Mask, and Final Results)
def removeBg(imagePath):
inputs_dir = os.path.join(currentDir, 'static/inputs/')
results_dir = os.path.join(currentDir, 'static/results/')
masks_dir = os.path.join(currentDir, 'static/masks/')
# convert string of image data to uint8
with open(imagePath, "rb") as image:
f = image.read()
img = bytearray(f)
nparr = np.frombuffer(img, np.uint8)
if len(nparr) == 0:
return '---Empty image---'
# decode image
try:
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
except:
# build a response dict to send back to client
return "---Empty image---"
# save image to inputs
unique_filename = str(uuid.uuid4())
cv2.imwrite(inputs_dir+unique_filename+'.jpg', img)
# processing
image = transform.resize(img, (320, 320), mode='constant')
tmpImg = np.zeros((image.shape[0], image.shape[1], 3))
tmpImg[:, :, 0] = (image[:, :, 0]-0.485)/0.229
tmpImg[:, :, 1] = (image[:, :, 1]-0.456)/0.224
tmpImg[:, :, 2] = (image[:, :, 2]-0.406)/0.225
tmpImg = tmpImg.transpose((2, 0, 1))
tmpImg = np.expand_dims(tmpImg, 0)
image = torch.from_numpy(tmpImg)
image = image.type(torch.FloatTensor)
image = Variable(image)
d1, d2, d3, d4, d5, d6, d7 = net(image)
pred = d1[:, 0, :, :]
ma = torch.max(pred)
mi = torch.min(pred)
dn = (pred-mi)/(ma-mi)
pred = dn
save_output(inputs_dir+unique_filename+'.jpg', unique_filename +
'.png', pred, results_dir, 'image')
save_output(inputs_dir+unique_filename+'.jpg', unique_filename +
'.png', pred, masks_dir, 'mask')
return "---Success---"
# ------- Load Trained Model --------
print("---Loading Model---")
model_name = 'u2net'
model_dir = os.path.join(currentDir, 'saved_models',
model_name, model_name + '.pth')
net = U2NET(3, 1)
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_dir))
net.cuda()
else:
net.load_state_dict(torch.load(model_dir, map_location='cpu'))
# ------- Load Trained Model --------
print("---Removing Background...")
# ------- Call The removeBg Function --------
imgPath = "Image_File_Path" # Change this to your image path
print(removeBg(imgPath))