-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflow_face_conv.py
131 lines (111 loc) · 4.44 KB
/
tensorflow_face_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/python
#coding=utf-8
''' face detect convolution'''
# pylint: disable=invalid-name
import os
import logging as log
import matplotlib.pyplot as plt
import common
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import cv2
SIZE = 64
x_data = tf.placeholder(tf.float32, [None, SIZE, SIZE, 3])
y_data = tf.placeholder(tf.float32, [None, None])
keep_prob_5 = tf.placeholder(tf.float32)
keep_prob_75 = tf.placeholder(tf.float32)
def weightVariable(shape):
''' build weight variable'''
init = tf.random_normal(shape, stddev=0.01)
#init = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(init)
def biasVariable(shape):
''' build bias variable'''
init = tf.random_normal(shape)
#init = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(init)
def conv2d(x, W):
''' conv2d by 1, 1, 1, 1'''
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxPool(x):
''' max pooling'''
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def dropout(x, keep):
''' drop out'''
return tf.nn.dropout(x, keep)
def cnnLayer(classnum):
''' create cnn layer'''
# 第一层
W1 = weightVariable([3, 3, 3, 32]) # 卷积核大小(3,3), 输入通道(3), 输出通道(32)
b1 = biasVariable([32])
conv1 = tf.nn.relu(conv2d(x_data, W1) + b1)
pool1 = maxPool(conv1)
# 减少过拟合,随机让某些权重不更新
drop1 = dropout(pool1, keep_prob_5) # 32 * 32 * 32 多个输入channel 被filter内积掉了
# 第二层
W2 = weightVariable([3, 3, 32, 64])
b2 = biasVariable([64])
conv2 = tf.nn.relu(conv2d(drop1, W2) + b2)
pool2 = maxPool(conv2)
drop2 = dropout(pool2, keep_prob_5) # 64 * 16 * 16
# 第三层
W3 = weightVariable([3, 3, 64, 64])
b3 = biasVariable([64])
conv3 = tf.nn.relu(conv2d(drop2, W3) + b3)
pool3 = maxPool(conv3)
drop3 = dropout(pool3, keep_prob_5) # 64 * 8 * 8
# 全连接层
Wf = weightVariable([8*16*32, 512])
bf = biasVariable([512])
drop3_flat = tf.reshape(drop3, [-1, 8*16*32])
dense = tf.nn.relu(tf.matmul(drop3_flat, Wf) + bf)
dropf = dropout(dense, keep_prob_75)
# 输出层
Wout = weightVariable([512, classnum])
bout = weightVariable([classnum])
#out = tf.matmul(dropf, Wout) + bout
out = tf.add(tf.matmul(dropf, Wout), bout)
return out
def train(train_x, train_y, tfsavepath):
''' train'''
log.debug('train')
out = cnnLayer(train_y.shape[1])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=y_data))
train_step = tf.train.AdamOptimizer(0.01).minimize(cross_entropy)
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(y_data, 1)), tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_size = 10
num_batch = len(train_x) // 10
for n in range(10):
r = np.random.permutation(len(train_x))
train_x = train_x[r, :]
train_y = train_y[r, :]
for i in range(num_batch):
batch_x = train_x[i*batch_size : (i+1)*batch_size]
batch_y = train_y[i*batch_size : (i+1)*batch_size]
_, loss = sess.run([train_step, cross_entropy],\
feed_dict={x_data:batch_x, y_data:batch_y,
keep_prob_5:0.75, keep_prob_75:0.75})
print(n*num_batch+i, loss)
# 获取测试数据的准确率
acc = accuracy.eval({x_data:train_x, y_data:train_y, keep_prob_5:1.0, keep_prob_75:1.0})
print('after 10 times run: accuracy is ', acc)
saver.save(sess, tfsavepath)
def validate(test_x, tfsavepath):
''' validate '''
output = cnnLayer(2)
#predict = tf.equal(tf.argmax(output, 1), tf.argmax(y_data, 1))
predict = output
saver = tf.train.Saver()
with tf.Session() as sess:
#sess.run(tf.global_variables_initializer())
saver.restore(sess, tfsavepath)
res = sess.run([predict, tf.argmax(output, 1)],
feed_dict={x_data: test_x,
keep_prob_5:1.0, keep_prob_75: 1.0})
return res
if __name__ == '__main__':
pass