-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflow_face_camera.py
91 lines (75 loc) · 2.71 KB
/
tensorflow_face_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/python
# coding=utf-8
''' face detect
https://github.com/seathiefwang/FaceRecognition-tensorflow
http://tumumu.cn/2017/05/02/deep-learning-face/
'''
# pylint: disable=invalid-name
import os
import random
import numpy as np
import cv2
def createdir(*args):
''' create dir'''
for item in args:
if not os.path.exists(item):
os.makedirs(item)
IMGSIZE = 64
def getpaddingSize(shape):
''' get size to make image to be a square rect '''
h, w = shape
longest = max(h, w)
result = (np.array([longest] * 4, int) - np.array([h, h, w, w], int)) // 2
return result.tolist()
def dealwithimage(img, h=64, w=64):
''' dealwithimage '''
#img = cv2.imread(imgpath)
top, bottom, left, right = getpaddingSize(img.shape[0:2])
img = cv2.copyMakeBorder(img, top, bottom, left,
right, cv2.BORDER_CONSTANT, value=[0, 0, 0])
img = cv2.resize(img, (h, w))
return img
def relight(imgsrc, alpha=1, bias=0):
'''relight'''
imgsrc = imgsrc.astype(float)
imgsrc = imgsrc * alpha + bias
imgsrc[imgsrc < 0] = 0
imgsrc[imgsrc > 255] = 255
imgsrc = imgsrc.astype(np.uint8)
return imgsrc
def getfacefromcamera(outdir):
createdir(outdir)
camera = cv2.VideoCapture(1)
haar = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
n = 1
while 1:
if (n <= 200):
print('It`s processing %s image.' % n)
# 读帧
success, img = camera.read()
cv2.imshow('test', img)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = haar.detectMultiScale(gray_img, 1.3, 5)
for f_x, f_y, f_w, f_h in faces:
face = img[f_y:f_y + f_h, f_x:f_x + f_w]
face = cv2.resize(face, (IMGSIZE, IMGSIZE))
# could deal with face to train
face = relight(face, random.uniform(
0.5, 1.5), random.randint(-50, 50))
cv2.imwrite(os.path.join(outdir, str(n) + '.jpg'), face)
cv2.putText(img, 'haha', (f_x, f_y - 20),
cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) # 显示名字
img = cv2.rectangle(
img, (f_x, f_y), (f_x + f_w, f_y + f_h), (255, 0, 0), 2)
n += 1
cv2.imshow('img', img)
key = cv2.waitKey(30) & 0xff
if key == 27:
break
else:
break
camera.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
name = input('please input yourename: ')
getfacefromcamera(os.path.join('./image/trainfaces', name))