-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
executable file
·70 lines (57 loc) · 2.83 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import logging
import torch
from torchvision import transforms, datasets
from torch.utils.data import DataLoader, RandomSampler, DistributedSampler, SequentialSampler
import utils.imageNet_utils as datasets
logger = logging.getLogger(__name__)
def get_loader(args, model=None):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
if args.dataset == 'imagenet1k':
g=datasets.ViTImageNetLoaderGenerator(args.dataset_path,'imagenet',args.train_batch_size,args.eval_batch_size,16, kwargs={"model":model})
train_loader = g.train_loader()
test_loader = g.test_loader()
return train_loader, test_loader
transform_train = transforms.Compose([
transforms.RandomResizedCrop((args.img_size, args.img_size), scale=(0.05, 1.0)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
transform_test = transforms.Compose([
transforms.Resize((args.img_size, args.img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
if args.dataset == "cifar10":
trainset = datasets.CIFAR10(root="./data",
train=True,
download=True,
transform=transform_train)
testset = datasets.CIFAR10(root="./data",
train=False,
download=True,
transform=transform_test) if args.local_rank in [-1, 0] else None
elif args.dataset == "cifar10":
trainset = datasets.CIFAR100(root="./data",
train=True,
download=True,
transform=transform_train)
testset = datasets.CIFAR100(root="./data",
train=False,
download=True,
transform=transform_test) if args.local_rank in [-1, 0] else None
if args.local_rank == 0:
torch.distributed.barrier()
train_sampler = RandomSampler(trainset) if args.local_rank == -1 else DistributedSampler(trainset)
test_sampler = SequentialSampler(testset)
train_loader = DataLoader(trainset,
sampler=train_sampler,
batch_size=args.train_batch_size,
num_workers=4,
pin_memory=True)
test_loader = DataLoader(testset,
sampler=test_sampler,
batch_size=args.eval_batch_size,
num_workers=4,
pin_memory=True) if testset is not None else None
return train_loader, test_loader