-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdataset.py
355 lines (261 loc) · 10.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import numpy as np
import torch
import skimage
from skimage import transform
import matplotlib.pyplot as plt
import os
import copy
class Dataset(torch.utils.data.Dataset):
"""
dataset of image files of the form
stuff<number>_trans.pt
stuff<number>_density.pt
"""
def __init__(self, data_dir, data_type='float32', transform=None, sgm=25, ratio=0.9, size_data=(256, 256, 3), size_window=(5, 5)):
self.data_dir = data_dir
self.transform = transform
self.data_type = data_type
self.sgm = sgm
self.ratio = ratio
self.size_data = size_data
self.size_window = size_window
lst_data = os.listdir(data_dir)
# lst_input = [f for f in lst_data if f.startswith('input')]
# lst_label = [f for f in lst_data if f.startswith('label')]
#
# lst_input.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
# lst_label.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
#
# self.lst_input = lst_input
# self.lst_label = lst_label
lst_data.sort(key=lambda f: (''.join(filter(str.isdigit, f))))
# lst_data.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
self.lst_data = lst_data
self.noise = self.sgm / 255.0 * np.random.randn(len(self.lst_data), self.size_data[0], self.size_data[1], self.size_data[2])
def __getitem__(self, index):
# label = np.load(os.path.join(self.data_dir, self.lst_label[index]))
# input = np.load(os.path.join(self.data_dir, self.lst_input[index]))
#
# if label.dtype == np.uint8:
# label = label / 255.0
# if input.dtype == np.uint8:
# input = input / 255.0
#
# if label.ndim == 2:
# label = np.expand_dims(label, axis=2)
# if input.ndim == 2:
# input = np.expand_dims(input, axis=2)
#
# if self.ny != label.shape[0]:
# label = label.transpose((1, 0, 2))
# if self.ny != input.shape[0]:
# input = input.transpose((1, 0, 2))
#
# data = {'input': input, 'label': label}
data = plt.imread(os.path.join(self.data_dir, self.lst_data[index]))
if data.dtype == np.uint8:
data = data / 255.0
if data.ndim == 2:
data = np.expand_dims(data, axis=2)
if data.shape[0] > data.shape[1]:
data = data.transpose((1, 0, 2))
label = data + self.noise[index]
input, mask = self.generate_mask(copy.deepcopy(label))
data = {'label': label, 'input': input, 'mask': mask}
if self.transform:
data = self.transform(data)
return data
def __len__(self):
return len(self.lst_data)
def generate_mask(self, input):
ratio = self.ratio
size_window = self.size_window
size_data = self.size_data
num_sample = int(size_data[0] * size_data[1] * (1 - ratio))
mask = np.ones(size_data)
output = input
for ich in range(size_data[2]):
idy_msk = np.random.randint(0, size_data[0], num_sample)
idx_msk = np.random.randint(0, size_data[1], num_sample)
idy_neigh = np.random.randint(-size_window[0] // 2 + size_window[0] % 2, size_window[0] // 2 + size_window[0] % 2, num_sample)
idx_neigh = np.random.randint(-size_window[1] // 2 + size_window[1] % 2, size_window[1] // 2 + size_window[1] % 2, num_sample)
idy_msk_neigh = idy_msk + idy_neigh
idx_msk_neigh = idx_msk + idx_neigh
idy_msk_neigh = idy_msk_neigh + (idy_msk_neigh < 0) * size_data[0] - (idy_msk_neigh >= size_data[0]) * size_data[0]
idx_msk_neigh = idx_msk_neigh + (idx_msk_neigh < 0) * size_data[1] - (idx_msk_neigh >= size_data[1]) * size_data[1]
id_msk = (idy_msk, idx_msk, ich)
id_msk_neigh = (idy_msk_neigh, idx_msk_neigh, ich)
output[id_msk] = input[id_msk_neigh]
mask[id_msk] = 0.0
return output, mask
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, data):
# Swap color axis because numpy image: H x W x C
# torch image: C x H x W
# for key, value in data:
# data[key] = torch.from_numpy(value.transpose((2, 0, 1)))
#
# return data
input, label, mask = data['input'], data['label'], data['mask']
input = input.transpose((2, 0, 1)).astype(np.float32)
label = label.transpose((2, 0, 1)).astype(np.float32)
mask = mask.transpose((2, 0, 1)).astype(np.float32)
return {'input': torch.from_numpy(input), 'label': torch.from_numpy(label), 'mask': torch.from_numpy(mask)}
class Normalize(object):
def __init__(self, mean=0.5, std=0.5):
self.mean = mean
self.std = std
def __call__(self, data):
input, label, mask = data['input'], data['label'], data['mask']
input = (input - self.mean) / self.std
label = (label - self.mean) / self.std
data = {'input': input, 'label': label, 'mask': mask}
return data
class RandomFlip(object):
def __call__(self, data):
# Random Left or Right Flip
# for key, value in data:
# data[key] = 2 * (value / 255) - 1
#
# return data
input, label, mask = data['input'], data['label'], data['mask']
if np.random.rand() > 0.5:
input = np.fliplr(input)
label = np.fliplr(label)
mask = np.fliplr(mask)
if np.random.rand() > 0.5:
input = np.flipud(input)
label = np.flipud(label)
mask = np.flipud(mask)
return {'input': input, 'label': label, 'mask': mask}
class Rescale(object):
"""Rescale the image in a sample to a given size
Args:
output_size (tuple or int): Desired output size.
If tuple, output is matched to output_size.
If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, data):
input, label = data['input'], data['label']
h, w = input.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
input = transform.resize(input, (new_h, new_w))
label = transform.resize(label, (new_h, new_w))
return {'input': input, 'label': label}
class RandomCrop(object):
"""Crop randomly the image in a sample
Args:
output_size (tuple or int): Desired output size.
If int, square crop is made.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, data):
input, label, mask = data['input'], data['label'], data['mask']
h, w = input.shape[:2]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
id_y = np.arange(top, top + new_h, 1)[:, np.newaxis].astype(np.int32)
id_x = np.arange(left, left + new_w, 1).astype(np.int32)
# input = input[top: top + new_h, left: left + new_w]
# label = label[top: top + new_h, left: left + new_w]
input = input[id_y, id_x]
label = label[id_y, id_x]
mask = mask[id_y, id_x]
return {'input': input, 'label': label, 'mask': mask}
class UnifromSample(object):
"""Crop randomly the image in a sample
Args:
output_size (tuple or int): Desired output size.
If int, square crop is made.
"""
def __init__(self, stride):
assert isinstance(stride, (int, tuple))
if isinstance(stride, int):
self.stride = (stride, stride)
else:
assert len(stride) == 2
self.stride = stride
def __call__(self, data):
input, label, mask = data['input'], data['label'], data['mask']
h, w = input.shape[:2]
stride_h, stride_w = self.stride
new_h = h//stride_h
new_w = w//stride_w
top = np.random.randint(0, stride_h + (h - new_h * stride_h))
left = np.random.randint(0, stride_w + (w - new_w * stride_w))
id_h = np.arange(top, h, stride_h)[:, np.newaxis]
id_w = np.arange(left, w, stride_w)
input = input[id_h, id_w]
label = label[id_h, id_w]
mask = mask[id_h, id_w]
return {'input': input, 'label': label, 'mask': mask}
class ZeroPad(object):
"""Rescale the image in a sample to a given size
Args:
output_size (tuple or int): Desired output size.
If tuple, output is matched to output_size.
If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, data):
input, label, mask = data['input'], data['label'], data['mask']
h, w = input.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
l = (new_w - w)//2
r = (new_w - w) - l
u = (new_h - h)//2
b = (new_h - h) - u
input = np.pad(input, pad_width=((u, b), (l, r), (0, 0)))
label = np.pad(label, pad_width=((u, b), (l, r), (0, 0)))
mask = np.pad(mask, pad_width=((u, b), (l, r), (0, 0)))
return {'input': input, 'label': label, 'mask': mask}
class ToNumpy(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, data):
# Swap color axis because numpy image: H x W x C
# torch image: C x H x W
# for key, value in data:
# data[key] = value.transpose((2, 0, 1)).numpy()
#
# return data
return data.to('cpu').detach().numpy().transpose(0, 2, 3, 1)
# input, label = data['input'], data['label']
# input = input.transpose((2, 0, 1))
# label = label.transpose((2, 0, 1))
# return {'input': input.detach().numpy(), 'label': label.detach().numpy()}
class Denormalize(object):
def __init__(self, mean=0.5, std=0.5):
self.mean = mean
self.std = std
def __call__(self, data):
data = self.std * data + self.mean
return data