Source code of the paper "A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs" [Paper]
Nodewise | Edgewise | Agree | Disagree | |
---|---|---|---|---|
GNNs | ||||
Structured Prediction Models |
- python >= 3.6
- matplotlib >= 3.2.2
- numpy >= 1.19.5
- pathlib2 2.3.5
- torch 1.7.0+cu101
- torch-geometric 2.0.1
Install the dependencies from requirements file. PyTorch and PyTorch-Geometric are installed with Cuda 10.1.
pip install -r requirements.txt
- Train GNNs(
GCN
orGAT
). GNNs model nodewise marginals and do not model the label dependency.
PYTHONPATH=. python src/train.py --dataset Cora --model GCN
PYTHONPATH=. python src/train.py --dataset Cora --model GAT
- Train structured prediction models(
GMNN
orEPFGNN
). These models combinine GNNs with markov networks to model the output joint distribution.
PYTHONPATH=. python src/train_gmnn.py --dataset Cora --model GMNN
PYTHONPATH=. python src/train_epfgnn.py --dataset Cora --model EPFGNN
- Evaluate the trained model (
GCN
,GAT
,GMNN
, orEPFGNN
) with edgewise uncertainty metrics. Use--reli_diag
to plot the reliability diagram.
PYTHONPATH=. python src/evaluation.py --dataset Cora --model <trained_model> --reli_diag
We implemented easy-to-use wrappers for the metrics in src/metric.py
. For detailed implementation please see src/calibloss.py
. An example of evaluating your trained models can be like:
from src.metric import NodewiseMetrics, EdgewiseMetrics
log_porb = ... # Make sure your model output is log probability
gt, test_mask = ... # label and test mask
eval_edge_index = ... # Edges we want to evaluate
node_eval = NodewiseMetrics(log_prob, gt, test_mask)
node_results = node_eval.acc(), node_eval.nll(), node_eval.brier(), node_eval.ece()
edge_eval = EdgewiseMetrics(log_prob, gt, eval_edge_index)
edge_results = edge_eval.acc(), edge_eval.nll(), edge_eval.brier(), edge_eval.ece()
@article{hsuh2022A,
title={A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs},
author={Hans Hao-Hsun Hsu and Yuesong Shen and Daniel Cremers},
journal={New Frontiers in Graph Learning Workshop, NeurIPS 2022},
year={2022}
}