-
Notifications
You must be signed in to change notification settings - Fork 0
/
bikeshare_2.py
229 lines (189 loc) · 8.47 KB
/
bikeshare_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import time
import pandas as pd
import numpy as np
import calendar
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
while True:
city = input('\nWould you like to see data for Chicago, New York, or Washington?\n')
if city.lower() not in 'chicago new york washington':
print("Sorry, I didn't understand that. Please enter the city name again.")
continue
else:
break
if 'chi' in city.lower():
city = 'chicago'
elif 'was' in city.lower():
city = 'washington'
elif 'new' in city.lower():
city = 'new york city'
# get user input for month (all, january, february, ... , june)
while True:
month = input('\nWould you like to filter by month (January thru June)? Enter the month name or \'all\'.\n')
#this will make sure the month input is valid
monlist = ['january', 'february', 'march', 'april', 'may', 'june', 'all']
if month.lower() not in monlist:
print('Sorry, I didn\'t understand that. Please enter the month filter again.')
else:
break
# get user input for day of week (all, monday, tuesday, ... sunday)
while True:
day = input('\nWould you like to filter by day of the week? Enter day or \'all\'.\n')
daylist = ['sunday', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'all']
if day.lower() not in daylist:
print('Sorry, I didn\'t understand that. Please enter the day filter again.')
else:
break
print('\nTHANKS! \nYou have selected {} for the city; and {} and {} for the month and day filters.'.format(city.title(), month.title(), day.title()))
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month.lower() != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month.lower()) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day.lower() != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
#keeping this here to check on the data
if False:
print(df.head(n=5))
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month- need to convert month back to name
if df['month'].nunique() > 1:
pop_month = df['month'].mode()[0]
pop_month = calendar.month_name[pop_month]
print('Most Popular Month:', pop_month)
# display the most common day of week
if df['day_of_week'].nunique() > 1:
pop_weekday = df['day_of_week'].mode()[0]
print('Most Popular Day of Week:', pop_weekday)
# extract hour from the Start Time column to its own column -- month and weekday have columns
df['hour'] = df['Start Time'].dt.hour
# display the most popular hour
pop_hour = df['hour'].mode()[0]
print('Most Popular Start Hour:', pop_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
pop_start = df['Start Station'].mode()[0]
print('Most popular point of embarcation:', pop_start)
# display most commonly used end station
pop_end = df['End Station'].mode()[0]
print('Most popular destination:', pop_end)
# display most frequent combination of start station and end station trip
df['combination'] = df['Start Station'] + ' to ' + df['End Station']
pop_combination = df['combination'].mode()[0]
print('Most frequent trip:', pop_combination)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
total_duration = df['Trip Duration'].sum()/3600
print('Total duration of all trips was {} hours.'.format(round(total_duration, 2)))
# display mean travel time
mean_duration = df['Trip Duration'].mean()
m, s = divmod(mean_duration, 60)
print('The average trip lasted {} minutes and {} seconds.'.format(int(m), int(s)))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
user_type_count = df['User Type'].value_counts()
print('User types break down as follows:\n', user_type_count, '\n')
# Display counts of gender and DoB if those columns exist.
if 'Gender' in df.head(n=1):
gender_count = df['Gender'].value_counts()
print('User gender breaks down as follows:\n', gender_count, '\n')
# Display earliest, most recent, and most common year of birth
dob_earliest = df['Birth Year'].min()
dob_recent = df['Birth Year'].max()
dob_mode = df['Birth Year'].mode()[0]
print('\nThe oldest rider was born in {}. (If that looks too old it could be a data error...)'.format(int(dob_earliest)),
'\nThe youngest rider was born in {}.'.format(int(dob_recent)),
'\nThe most common birth year for riders was {}.'.format(int(dob_mode)))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def display_data(df):
'''Displays five lines of data if the user specifies that they would like to.
After displaying five lines, ask the user if they would like to see five more,
continuing asking until they say stop.
Args:
dataframe
Returns:
5 rows of data
'''
n = 5
#display = input('\nWould you like to view individual trip data?\n'
#'Type \'yes\' or \'no\'.\n')
while True:
display = input('\nWould you like to view individual trip data?\n'
'Type \'yes\' or \'no\'.\n')
if display.lower() == 'yes':
print('\nYou said yes. Here\'s that data!\n')
print(df.iloc[(n-5):n])
n += 5
elif display.lower() == 'no':
print('\nYou said no. Thanks anyways!')
break
else:
print('\nDidn\'t catch that. Try again.')
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
display_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()