-
Notifications
You must be signed in to change notification settings - Fork 11
/
ope.py
7172 lines (5984 loc) · 287 KB
/
ope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2023, Haruka Kiyohara, Ren Kishimoto, HAKUHODO Technologies Inc., and Hanjuku-kaso Co., Ltd. All rights reserved.
# Licensed under the Apache 2.0 License.
"""Meta class to handle standard and cumulative distribution OPE."""
from dataclasses import dataclass
from typing import Dict, List, Tuple, Optional, Union, Any
from pathlib import Path
from warnings import warn
from collections import defaultdict
import numpy as np
from scipy.stats import norm
from sklearn.utils import check_scalar
import pandas as pd
from pandas import DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
from d3rlpy.preprocessing import ActionScaler
from .estimators_base import (
BaseOffPolicyEstimator,
BaseCumulativeDistributionOPEEstimator,
)
from ..utils import (
MultipleLoggedDataset,
MultipleInputDict,
estimate_confidence_interval_by_bootstrap,
estimate_confidence_interval_by_hoeffding,
estimate_confidence_interval_by_empirical_bernstein,
estimate_confidence_interval_by_t_test,
defaultdict_to_dict,
check_array,
check_logged_dataset,
check_input_dict,
)
from ..types import LoggedDataset, OPEInputDict
@dataclass
class OffPolicyEvaluation:
"""Class to perform OPE by multiple estimators simultaneously (applicable to both discrete/continuous action cases).
Imported as: :class:`scope_rl.ope.OffPolicyEvaluation`
Note
-----------
OPE estimates the expected policy performance of a given evaluation policy called the policy value.
.. math::
V(\\pi) := \\mathbb{E} \\left[ \\sum_{t=0}^{T-1} \\gamma^t r_t \\mid \\pi \\right]
where :math:`\\pi` is the evaluation policy, :math:`r_t` is the reward observed at each timestep :math:`t`,
:math:`T` is the total number of timesteps in an episode, and :math:`\\gamma` is the discount factor.
Parameters
-----------
logged_dataset: LoggedDataset or MultipleLoggedDataset
Logged dataset used to conduct OPE.
.. code-block:: python
key: [
size,
n_trajectories,
step_per_trajectory,
action_type,
n_actions,
action_dim,
action_keys,
action_meaning,
state_dim,
state_keys,
state,
action,
reward,
done,
terminal,
info,
pscore,
behavior_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.dataset.SyntheticDataset` describes the components of :class:`logged_dataset`.
ope_estimators: list of BaseOffPolicyEstimator
List of OPE estimators used to evaluate the policy value of the evaluation policies.
Estimators must follow the interface of :class:`scope_rl.ope.BaseOffPolicyEstimator`.
n_step_pdis: int, default=0 (>= 0)
Number of previous steps to use per-decision importance weight in marginal OPE estimators.
When set to zero, the estimator is reduced to the vanilla state marginal IS.
bandwidth: float, default=1.0 (> 0)
Bandwidth hyperparameter of the kernel used in continuous action case.
action_scaler: d3rlpy.preprocessing.ActionScaler, default=None
Scaling factor of action.
disable_reward_after_done: bool, default=True
Whether to apply :math:`r = 0` once done is observed in an episode.
Examples
----------
Preparation:
.. code-block:: python
# import necessary module from SCOPE-RL
from scope_rl.dataset import SyntheticDataset
from scope_rl.policy import EpsilonGreedyHead
from scope_rl.ope import CreateOPEInput
from scope_rl.ope import OffPolicyEvaluation as OPE
from scope_rl.ope.discrete import TrajectoryWiseImportanceSampling as TIS
from scope_rl.ope.discrete import PerDecisionImportanceSampling as PDIS
# import necessary module from other libraries
import gym
import rtbgym
from d3rlpy.algos import DoubleDQNConfig
from d3rlpy.dataset import create_fifo_replay_buffer
from d3rlpy.algos import ConstantEpsilonGreedy
# initialize environment
env = gym.make("RTBEnv-discrete-v0")
# define (RL) agent (i.e., policy) and train on the environment
ddqn = DoubleDQNConfig().create()
buffer = create_fifo_replay_buffer(
limit=10000,
env=env,
)
explorer = ConstantEpsilonGreedy(
epsilon=0.3,
)
ddqn.fit_online(
env=env,
buffer=buffer,
explorer=explorer,
n_steps=10000,
n_steps_per_epoch=1000,
)
# convert ddqn policy to stochastic data collection policy
behavior_policy = EpsilonGreedyHead(
ddqn,
n_actions=env.action_space.n,
epsilon=0.3,
name="ddqn_epsilon_0.3",
random_state=12345,
)
# initialize dataset class
dataset = SyntheticDataset(
env=env,
max_episode_steps=env.step_per_episode,
)
# data collection
logged_dataset = dataset.obtain_episodes(
behavior_policies=behavior_policy,
n_trajectories=100,
random_state=12345,
)
Create Input for OPE:
.. code-block:: python
# evaluation policy
ddqn_ = EpsilonGreedyHead(
base_policy=ddqn,
n_actions=env.action_space.n,
name="ddqn",
epsilon=0.0,
random_state=12345
)
random_ = EpsilonGreedyHead(
base_policy=ddqn,
n_actions=env.action_space.n,
name="random",
epsilon=1.0,
random_state=12345
)
# create input for off-policy evaluation (OPE)
prep = CreateOPEInput(
env=env,
)
input_dict = prep.obtain_whole_inputs(
logged_dataset=logged_dataset,
evaluation_policies=[ddqn_, random_],
n_trajectories_on_policy_evaluation=100,
random_state=12345,
)
**Off-Policy Evaluation**:
.. code-block:: python
# OPE
ope = OPE(
logged_dataset=logged_dataset,
ope_estimators=[TIS(), PDIS()],
)
policy_value_dict = ope.estimate_policy_value(
input_dict=input_dict,
)
**Output**:
.. code-block:: python
>>> policy_value_dict
{'ddqn': {'on_policy': 15.95, 'tis': 18.103809657474702, 'pdis': 16.95314065192053},
'random': {'on_policy': 12.69, 'tis': 0.4885685147584351, 'pdis': 6.2752568547701335}}
.. seealso::
* :doc:`Quickstart </documentation/quickstart>`
* :doc:`Related tutorials </documentation/examples/basic_ope>`
"""
logged_dataset: Union[LoggedDataset, MultipleLoggedDataset]
ope_estimators: List[BaseOffPolicyEstimator]
n_step_pdis: int = 0
bandwidth: float = 1.0
action_scaler: Optional[ActionScaler] = None
disable_reward_after_done: bool = True
def __post_init__(self) -> None:
self.use_multiple_logged_dataset = False
if isinstance(self.logged_dataset, MultipleLoggedDataset):
self.multiple_logged_dataset = self.logged_dataset
self.logged_dataset = self.multiple_logged_dataset.get(
self.multiple_logged_dataset.behavior_policy_names[0], dataset_id=0
)
self.use_multiple_logged_dataset = True
check_logged_dataset(self.logged_dataset)
self.step_per_trajectory = self.logged_dataset["step_per_trajectory"]
self.action_type = self.logged_dataset["action_type"]
if not self.use_multiple_logged_dataset:
self._register_logged_dataset()
self.ope_estimators_ = dict()
for estimator in self.ope_estimators:
self.ope_estimators_[estimator.estimator_name] = estimator
if estimator.action_type != self.action_type:
raise RuntimeError(
f"One of the ope_estimators, {estimator.estimator_name} does not match the action_type of logged_dataset (`{self.action_type}`)"
)
if not isinstance(estimator, BaseOffPolicyEstimator):
raise RuntimeError(
f"ope_estimators must be child classes of BaseOffPolicyEstimator, but one of them, {estimator.estimator_name} is not"
)
self._estimate_confidence_interval = {
"bootstrap": estimate_confidence_interval_by_bootstrap,
"hoeffding": estimate_confidence_interval_by_hoeffding,
"bernstein": estimate_confidence_interval_by_empirical_bernstein,
"ttest": estimate_confidence_interval_by_t_test,
}
def _check_compared_estimators(
self,
compared_estimators: Optional[List[str]] = None,
):
if compared_estimators is None:
compared_estimators = self.estimators_name
elif not set(compared_estimators).issubset(self.estimators_name):
raise ValueError(
"compared_estimators must be a subset of self.estimators_name, but found False."
)
return compared_estimators
def _check_basic_visualization_inputs(
self,
hue: str,
fig_dir: Optional[Path] = None,
fig_name: Optional[str] = None,
):
if hue not in ["estimator", "policy"]:
raise ValueError(
f"hue must be either `estimator` or `policy`, but {hue} is given"
)
if fig_dir is not None and not isinstance(fig_dir, Path):
raise ValueError(f"fig_dir must be a Path, but {type(fig_dir)} is given")
if fig_name is not None and not isinstance(fig_name, str):
raise ValueError(f"fig_dir must be a string, but {type(fig_dir)} is given")
def _register_logged_dataset(
self,
behavior_policy_name: Optional[str] = None,
dataset_id: Optional[int] = None,
):
if behavior_policy_name is not None and dataset_id is not None:
self.logged_dataset = self.multiple_logged_dataset.get(
behavior_policy_name=behavior_policy_name, dataset_id=dataset_id
)
self.behavior_policy_reward = self.logged_dataset["reward"].reshape(
(-1, self.step_per_trajectory)
)
if self.disable_reward_after_done:
done = self.logged_dataset["done"].reshape((-1, self.step_per_trajectory))
self.behavior_policy_reward = self.behavior_policy_reward * (
1 - done
).cumprod(axis=1)
if self.action_type == "discrete":
self.input_dict_ = {
"step_per_trajectory": self.step_per_trajectory,
"action": self.logged_dataset["action"].astype(int),
"reward": self.behavior_policy_reward.flatten(),
"done": self.logged_dataset["done"],
"pscore": self.logged_dataset["pscore"],
}
else:
if self.action_scaler is not None and not isinstance(
self.action_scaler, ActionScaler
):
raise ValueError(
"action_scaler must be an instance of d3rlpy.preprocessing.ActionScaler, but found False"
)
check_scalar(
self.bandwidth, name="bandwidth", target_type=float, min_val=0.0
)
self.input_dict_ = {
"step_per_trajectory": self.step_per_trajectory,
"action": self.logged_dataset["action"].astype(int),
"reward": self.behavior_policy_reward.flatten(),
"done": self.logged_dataset["done"],
"pscore": self.logged_dataset["pscore"],
"action_scaler": self.action_scaler,
"bandwidth": self.bandwidth,
}
def _estimate_policy_value(
self,
input_dict: OPEInputDict,
compared_estimators: Optional[List[str]] = None,
) -> Dict[str, float]:
"""Estimate the policy value of the given evaluation policies.
Parameters
-------
input_dict: OPEInputDict
Dictionary of the OPE inputs for each evaluation policy.
.. code-block:: python
key: [evaluation_policy][
evaluation_policy_action,
evaluation_policy_action_dist,
state_action_value_prediction,
initial_state_value_prediction,
state_action_marginal_importance_weight,
state_marginal_importance_weight,
on_policy_policy_value,
gamma,
behavior_policy,
evaluation_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.ope.input.CreateOPEInput` describes the components of :class:`input_dict`.
compared_estimators: list of str, default=None
Name of compared estimators.
If `None` is given, all the estimators are compared.
Return
-------
policy_value_dict: dict
Dictionary containing the policy value of each evaluation policy estimated by OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
"""
check_input_dict(input_dict)
policy_value_dict = defaultdict(dict)
for eval_policy in input_dict.keys():
if input_dict[eval_policy]["on_policy_policy_value"] is not None:
policy_value_dict[eval_policy]["on_policy"] = input_dict[eval_policy][
"on_policy_policy_value"
].mean()
else:
policy_value_dict[eval_policy]["on_policy"] = None
for estimator_name in compared_estimators:
estimator = self.ope_estimators_[estimator_name]
policy_value_dict[eval_policy][
estimator_name
] = estimator.estimate_policy_value(
**input_dict[eval_policy],
**self.input_dict_,
n_step_pdis=self.n_step_pdis,
disable_reward_after_done=self.disable_reward_after_done,
)
return defaultdict_to_dict(policy_value_dict)
def _estimate_intervals(
self,
input_dict: OPEInputDict,
compared_estimators: Optional[List[str]] = None,
alpha: float = 0.05,
ci: str = "bootstrap",
n_bootstrap_samples: int = 100,
random_state: Optional[int] = None,
) -> Dict[str, Dict[str, float]]:
"""Estimate the confidence intervals of the policy value by nonparametric bootstrap.
Parameters
-------
input_dict: OPEInputDict
Dictionary of the OPE inputs for each evaluation policy.
.. code-block:: python
key: [evaluation_policy][
evaluation_policy_action,
evaluation_policy_action_dist,
state_action_value_prediction,
initial_state_value_prediction,
state_action_marginal_importance_weight,
state_marginal_importance_weight,
on_policy_policy_value,
gamma,
behavior_policy,
evaluation_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.ope.input.CreateOPEInput` describes the components of :class:`input_dict`.
compared_estimators: list of str, default=None
Name of compared estimators.
If `None` is given, all the estimators are compared.
alpha: float, default=0.05
Significance level. The value should be within `[0, 1)`.
ci: {"bootstrap", "hoeffding", "bernstein", "ttest"}, default="bootstrap"
Method to estimate the confidence interval.
n_bootstrap_samples: int, default=100 (> 0)
Number of resampling performed in the bootstrap procedure.
random_state: int, default=None (>= 0)
Random state.
Return
-------
policy_value_interval_dict: dict
Dictionary containing the confidence intervals estimated by nonparametric bootstrap.
key: :class:`[evaluation_policy][OPE_estimator_name]`
References
-------
Josiah P. Hanna, Peter Stone, and Scott Niekum.
"Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation." 2017.
Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh.
"High Confidence Policy Improvement." 2015.
Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh.
"High Confidence Off-Policy Evaluation." 2015.
"""
check_input_dict(input_dict)
policy_value_interval_dict = defaultdict(dict)
for eval_policy in input_dict.keys():
if input_dict[eval_policy]["on_policy_policy_value"] is not None:
policy_value_interval_dict[eval_policy][
"on_policy"
] = self._estimate_confidence_interval[ci](
input_dict[eval_policy]["on_policy_policy_value"],
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
else:
policy_value_interval_dict[eval_policy]["on_policy"] = None
for estimator_name in compared_estimators:
estimator = self.ope_estimators_[estimator_name]
policy_value_interval_dict[eval_policy][
estimator_name
] = estimator.estimate_interval(
**input_dict[eval_policy],
**self.input_dict_,
n_step_pdis=self.n_step_pdis,
disable_reward_after_done=self.disable_reward_after_done,
alpha=alpha,
ci=ci,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
return defaultdict_to_dict(policy_value_interval_dict)
def _summarize_off_policy_estimates(
self,
policy_value_dict: Dict[str, Any],
policy_value_interval_dict: Dict[str, Any],
) -> Tuple[Dict[str, DataFrame], Dict[str, DataFrame]]:
"""Summarize the policy value and their confidence intervals estimated by OPE estimators.
Parameters
-------
policy_value_dict: dict
Dictionary containing the policy value of each evaluation policy estimated by OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
policy_value_interval_dict: dict
Dictionary containing the confidence intervals estimated by nonparametric bootstrap.
key: :class:`[evaluation_policy][OPE_estimator_name]`
Return
-------
policy_value_df_dict: dict
Dictionary containing the policy value of each evaluation policy estimated by OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
policy_value_interval_df_dict: dict
Dictionary containing the confidence intervals estimated by nonparametric bootstrap.
key: :class:`[evaluation_policy][OPE_estimator_name]`
"""
policy_value_df_dict = dict()
policy_value_interval_df_dict = dict()
for eval_policy in policy_value_dict.keys():
policy_value_df_ = DataFrame(
policy_value_dict[eval_policy],
index=["policy_value"],
).T
on_policy_policy_value = None
if policy_value_dict[eval_policy]["on_policy"] is not None:
on_policy_policy_value = policy_value_dict[eval_policy][
"on_policy"
].mean()
if on_policy_policy_value is not None and on_policy_policy_value > 0:
policy_value_df_["relative_policy_value"] = (
policy_value_df_ / on_policy_policy_value
)
else:
policy_value_df_["relative_policy_value"] = np.nan
policy_value_df_dict[eval_policy] = policy_value_df_
policy_value_interval_df_dict[eval_policy] = DataFrame(
policy_value_interval_dict[eval_policy],
).T
return policy_value_df_dict, policy_value_interval_df_dict
def _evaluate_performance_of_ope_estimators(
self,
input_dict: OPEInputDict,
policy_value_dict: Dict[str, Any],
compared_estimators: Optional[List[str]] = None,
metric: str = "relative-ee",
return_by_dataframe: bool = False,
) -> Dict[str, Dict[str, float]]:
"""Evaluate the estimation performance/accuracy of OPE estimators.
Note
-------
Evaluate the estimation performance/accuracy of OPE estimators by relative estimation error (relative-EE) or squared error (SE).
.. math::
\\mathrm{Relative-EE}(\\hat{V}; \\mathcal{D})
:= \\left| \\frac{\\hat{V}(\\pi; \\mathcal{D}) - V_{\\mathrm{on}}(\\pi)}{V_{\\mathrm{on}}(\\pi)} \\right|,
.. math::
\\mathrm{SE}(\\hat{V}; \\mathcal{D}) := \\left( \\hat{V}(\\pi; \\mathcal{D}) - V_{\\mathrm{on}} \\right)^2,
where :math:`V_{\\mathrm{on}}(\\pi)` is the on-policy policy value of the evaluation policy :math:`\\pi`.
:math:`\\hat{V}(\\pi; \\mathcal{D})` is the policy value estimated by the OPE estimator :math:`\\hat{V}` and logged dataset :math:`\\mathcal{D}`.
Parameters
-------
input_dict: OPEInputDict or MultipleInputDict
Dictionary of the OPE inputs for each evaluation policy.
.. code-block:: python
key: [evaluation_policy][
evaluation_policy_action,
evaluation_policy_action_dist,
state_action_value_prediction,
initial_state_value_prediction,
state_action_marginal_importance_weight,
state_marginal_importance_weight,
on_policy_policy_value,
gamma,
behavior_policy,
evaluation_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.ope.input.CreateOPEInput` describes the components of :class:`input_dict`.
policy_value_dict: dict
Dictionary containing the policy value of each evaluation policy estimated by OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
compared_estimators: list of str, default=None
Name of compared estimators.
If `None` is given, all the estimators are compared.
metric: {"relative-ee", "se"}, default="relative-ee"
Evaluation metric used to evaluate and compare the estimation performance/accuracy of OPE estimators.
return_by_dataframe: bool, default=False
Whether to return the result in a dataframe format.
Return
-------
eval_metric_ope_dict/eval_metric_ope_df: dict or dataframe
Dictionary/dataframe containing evaluation metric for evaluating the estimation performance/accuracy of OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
"""
check_input_dict(input_dict)
eval_metric_ope_dict = defaultdict(dict)
if metric == "relative-ee":
for eval_policy in input_dict.keys():
on_policy_policy_value = input_dict[eval_policy][
"on_policy_policy_value"
]
for estimator in compared_estimators:
relative_ee_ = (
policy_value_dict[eval_policy][estimator]
- on_policy_policy_value
) / on_policy_policy_value
eval_metric_ope_dict[eval_policy][estimator] = np.abs(relative_ee_)
else:
for eval_policy in input_dict.keys():
on_policy_policy_value = input_dict[eval_policy][
"on_policy_policy_value"
].mean()
for estimator in compared_estimators:
se_ = (
policy_value_dict[eval_policy][estimator]
- on_policy_policy_value
) ** 2
eval_metric_ope_dict[eval_policy][estimator] = se_
eval_metric_ope_dict = defaultdict_to_dict(eval_metric_ope_dict)
if return_by_dataframe:
eval_metric_ope_df = DataFrame()
for eval_policy in input_dict.keys():
eval_metric_ope_df[eval_policy] = DataFrame(
eval_metric_ope_dict[eval_policy], index=[eval_policy]
).T
return eval_metric_ope_df if return_by_dataframe else eval_metric_ope_dict
def estimate_policy_value(
self,
input_dict: Union[OPEInputDict, MultipleInputDict],
compared_estimators: Optional[List[str]] = None,
behavior_policy_name: Optional[str] = None,
dataset_id: Optional[int] = None,
) -> Dict[str, float]:
"""Estimate the policy value of the given evaluation policies.
Parameters
-------
input_dict: OPEInputDict or MultipleInputDict
Dictionary of the OPE inputs for each evaluation policy.
.. code-block:: python
key: [evaluation_policy][
evaluation_policy_action,
evaluation_policy_action_dist,
state_action_value_prediction,
initial_state_value_prediction,
state_action_marginal_importance_weight,
state_marginal_importance_weight,
on_policy_policy_value,
gamma,
behavior_policy,
evaluation_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.ope.input.CreateOPEInput` describes the components of :class:`input_dict`.
compared_estimators: list of str, default=None
Name of compared estimators.
If `None` is given, all the estimators are compared.
behavior_policy_name: str, default=None
Name of the behavior policy.
dataset_id: int, default=None
Id of the logged dataset.
Return
-------
policy_value_dict: dict (, dict of list of dict)
Dictionary containing the policy value of each evaluation policy estimated by OPE estimators.
key: :class:`[evaluation_policy][OPE_estimator_name]`
When behavior_policy_name is `None` and dataset_id is `None`,
key: :class:`[behavior_policy_name][dataset_id][evaluation_policy][OPE_estimator_name]`
When behavior_policy is `None` and dataset_id is specified,
key: :class:`[behavior_policy_name][evaluation_policy][OPE_estimator_name]`
When behavior_policy_name is specified and dataset_id is `None`,
key: :class:`[dataset_id][OPE_estimator_name]`
"""
compared_estimators = self._check_compared_estimators(compared_estimators)
if self.use_multiple_logged_dataset:
if isinstance(input_dict, MultipleInputDict):
if behavior_policy_name is None and dataset_id is None:
if self.multiple_logged_dataset.n_datasets != input_dict.n_datasets:
raise ValueError(
"Expected that logged datasets and input dicts consists of the same behavior policies and dataset ids, but found False."
)
policy_value_dict = defaultdict(list)
for (
behavior_policy,
n_datasets,
) in input_dict.n_datasets.items():
for dataset_id_ in range(n_datasets):
self._register_logged_dataset(
behavior_policy_name=behavior_policy,
dataset_id=dataset_id_,
)
input_dict_ = input_dict.get(
behavior_policy_name=behavior_policy,
dataset_id=dataset_id_,
)
policy_value_dict_ = self._estimate_policy_value(
input_dict_,
compared_estimators=compared_estimators,
)
policy_value_dict[behavior_policy].append(
policy_value_dict_
)
policy_value_dict = defaultdict_to_dict(policy_value_dict)
elif behavior_policy_name is None and dataset_id is not None:
if (
self.multiple_logged_dataset.behavior_policy_names
!= input_dict.behavior_policy_names
):
raise ValueError(
"Expected that logged datasets and input dicts consists of the same behavior policies, but found False."
)
policy_value_dict = {}
for behavior_policy in input_dict.behavior_policy_names:
self._register_logged_dataset(
behavior_policy_name=behavior_policy, dataset_id=dataset_id
)
input_dict_ = input_dict.get(
behavior_policy_name=behavior_policy,
dataset_id=dataset_id,
)
policy_value_dict_ = self._estimate_policy_value(
input_dict_,
compared_estimators=compared_estimators,
)
policy_value_dict[behavior_policy] = policy_value_dict_
elif behavior_policy_name is not None and dataset_id is None:
if (
self.multiple_logged_dataset.n_datasets[behavior_policy_name]
!= input_dict.n_datasets[behavior_policy_name]
):
raise ValueError(
"Expected that logged datasets and input dicts consists of the same dataset ids, but found False."
)
policy_value_dict = []
for dataset_id_ in range(
input_dict.n_datasets[behavior_policy_name]
):
self._register_logged_dataset(
behavior_policy_name=behavior_policy_name,
dataset_id=dataset_id_,
)
input_dict_ = input_dict.get(
behavior_policy_name=behavior_policy_name,
dataset_id=dataset_id_,
)
policy_value_dict_ = self._estimate_policy_value(
input_dict_,
compared_estimators=compared_estimators,
)
policy_value_dict.append(policy_value_dict_)
else:
self._register_logged_dataset(
behavior_policy_name=behavior_policy_name, dataset_id=dataset_id
)
input_dict_ = input_dict.get(
behavior_policy_name=behavior_policy_name, dataset_id=dataset_id
)
policy_value_dict = self._estimate_policy_value(
input_dict_,
compared_estimators=compared_estimators,
)
else:
behavior_policy_name = list(input_dict.values())[0]["behavior_policy"]
dataset_id = list(input_dict.values())[0]["dataset_id"]
self._register_logged_dataset(
behavior_policy_name=behavior_policy_name, dataset_id=dataset_id
)
policy_value_dict = self._estimate_policy_value(
input_dict,
compared_estimators=compared_estimators,
)
else:
if isinstance(input_dict, MultipleInputDict):
raise ValueError(
"when using LoggedDataset, please use InputDict instead of MultipleInputDict"
)
policy_value_dict = self._estimate_policy_value(
input_dict,
compared_estimators=compared_estimators,
)
return policy_value_dict
def estimate_intervals(
self,
input_dict: Union[OPEInputDict, MultipleInputDict],
compared_estimators: Optional[List[str]] = None,
behavior_policy_name: Optional[str] = None,
dataset_id: Optional[int] = None,
alpha: float = 0.05,
ci: str = "bootstrap",
n_bootstrap_samples: int = 100,
random_state: Optional[int] = None,
) -> Dict[str, Dict[str, float]]:
"""Estimate the confidence intervals of the policy value by nonparametric bootstrap.
Parameters
-------
input_dict: OPEInputDict or MultipleInputDict
Dictionary of the OPE inputs for each evaluation policy.
.. code-block:: python
key: [evaluation_policy][
evaluation_policy_action,
evaluation_policy_action_dist,
state_action_value_prediction,
initial_state_value_prediction,
state_action_marginal_importance_weight,
state_marginal_importance_weight,
on_policy_policy_value,
gamma,
behavior_policy,
evaluation_policy,
dataset_id,
]
.. seealso::
:class:`scope_rl.ope.input.CreateOPEInput` describes the components of :class:`input_dict`.
compared_estimators: list of str, default=None
Name of compared estimators.
If `None` is given, all the estimators are compared.
behavior_policy_name: str, default=None
Name of the behavior policy.
dataset_id: int, default=None
Id of the logged dataset.
alpha: float, default=0.05
Significance level. The value should be within `[0, 1)`.
ci: {"bootstrap", "hoeffding", "bernstein", "ttest"}, default="bootstrap"
Method to estimate the confidence interval.
n_bootstrap_samples: int, default=100 (> 0)
Number of resampling performed in the bootstrap procedure.
random_state: int, default=None (>= 0)
Random state.
Return
-------
policy_value_interval_dict: dict
Dictionary containing the confidence intervals estimated by nonparametric bootstrap.
key: :class:`[evaluation_policy][OPE_estimator_name]`
When behavior_policy_name is `None` and dataset_id is `None`,
key: :class:`[behavior_policy_name][dataset_id][evaluation_policy][OPE_estimator_name]`
When behavior_policy_name is `None` and dataset_id is specified,
key: :class:`[behavior_policy_name][evaluation_policy][OPE_estimator_name]`
When behavior_policy_name is specified and dataset_id is `None`,
key: :class:`[dataset_id][OPE_estimator_name]`
References
-------
Josiah P. Hanna, Peter Stone, and Scott Niekum.
"Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation." 2017.
Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh.
"High Confidence Policy Improvement." 2015.
Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh.
"High Confidence Off-Policy Evaluation." 2015.
"""
compared_estimators = self._check_compared_estimators(compared_estimators)
if ci not in self._estimate_confidence_interval.keys():
raise ValueError(
f"ci must be one of 'bootstrap', 'hoeffding', 'bernstein', or 'ttest', but {ci} is given"
)
if self.use_multiple_logged_dataset:
if isinstance(input_dict, MultipleInputDict):
if behavior_policy_name is None and dataset_id is None:
if self.multiple_logged_dataset.n_datasets != input_dict.n_datasets:
raise ValueError(
"Expected that logged datasets and input dicts consists of the same behavior policies and dataset ids, but found False."
)
policy_value_interval_dict = defaultdict(list)
for (
behavior_policy,
n_datasets,
) in input_dict.n_datasets.items():
for dataset_id_ in range(n_datasets):
self._register_logged_dataset(
behavior_policy_name=behavior_policy,
dataset_id=dataset_id_,
)
input_dict_ = input_dict.get(
behavior_policy_name=behavior_policy,
dataset_id=dataset_id_,
)
policy_value_interval_dict_ = self._estimate_intervals(
input_dict_,
compared_estimators=compared_estimators,
alpha=alpha,
ci=ci,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,