forked from SizheAn/PanoHead
-
Notifications
You must be signed in to change notification settings - Fork 6
/
projector.py
350 lines (295 loc) · 14.9 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Project given image to the latent space of pretrained network pickle."""
import copy
import os
from time import perf_counter
import click
import imageio
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import pickle
import dnnlib
import legacy
from camera_utils import LookAtPoseSampler
def project(
G,
target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
c: torch.Tensor,
*,
num_steps = 1000,
w_avg_samples = 10000,
initial_learning_rate = 0.1,
initial_noise_factor = 0.05,
lr_rampdown_length = 0.25,
lr_rampup_length = 0.05,
noise_ramp_length = 0.75,
regularize_noise_weight = 1e5,
optimize_noise = False,
verbose = False,
device: torch.device
):
assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution)
def logprint(*args):
if verbose:
print(*args)
G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore
# Compute w stats.
logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
camera_lookat_point = torch.tensor([0, 0, 0.0], device=device)
cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, camera_lookat_point, radius=2.7, device=device)
intrinsics = torch.tensor([[4.2647, 0, 0.5], [0, 4.2647, 0.5], [0, 0, 1]], device=device)
c_samples = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
w_samples = G.mapping(torch.from_numpy(z_samples).to(device), c_samples.repeat(w_avg_samples,1)) # [N, L, C]
w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C]
w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C]
w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
# Setup noise inputs.
noise_bufs = { name: buf for (name, buf) in G.backbone.synthesis.named_buffers() if 'noise_const' in name }
# Load VGG16 feature detector.
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
with dnnlib.util.open_url(url) as f:
vgg16 = torch.jit.load(f).eval().to(device)
# Features for target image.
target_images = target.unsqueeze(0).to(device).to(torch.float32) / 255.0 * 2 - 1
target_images_perc = (target_images + 1) * (255/2)
if target_images_perc.shape[2] > 256:
target_images_perc = F.interpolate(target_images_perc, size=(256, 256), mode='area')
target_features = vgg16(target_images_perc, resize_images=False, return_lpips=True)
w_avg = torch.tensor(w_avg, dtype=torch.float32, device=device).repeat(1, G.backbone.mapping.num_ws, 1)
w_opt = w_avg.detach().clone()
w_opt.requires_grad = True
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device="cpu")
if optimize_noise:
optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)
else:
optimizer = torch.optim.Adam([w_opt], betas=(0.9, 0.999), lr=initial_learning_rate)
# Init noise.
if optimize_noise:
for buf in noise_bufs.values():
buf[:] = torch.randn_like(buf)
buf.requires_grad = True
for step in range(num_steps):
# Learning rate schedule.
t = step / num_steps
w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = initial_learning_rate * lr_ramp
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Synth images from opt_w.
w_noise = torch.randn_like(w_opt) * w_noise_scale
ws = w_opt + w_noise
synth_images = G.synthesis(ws, c=c, noise_mode='const')['image']
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
synth_images_perc = (synth_images + 1) * (255/2)
if synth_images_perc.shape[2] > 256:
synth_images_perc = F.interpolate(synth_images_perc, size=(256, 256), mode='area')
# Features for synth images.
synth_features = vgg16(synth_images_perc, resize_images=False, return_lpips=True)
perc_loss = (target_features - synth_features).square().sum(1).mean()
mse_loss = (target_images - synth_images).square().mean()
w_norm_loss = (w_opt-w_avg).square().mean()
# Noise regularization.
reg_loss = 0.0
if optimize_noise:
for v in noise_bufs.values():
noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2
reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss = 0.1 * mse_loss + perc_loss + 1.0 * w_norm_loss + reg_loss * regularize_noise_weight
# Step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
logprint(f'step: {step+1:>4d}/{num_steps} mse: {mse_loss:<4.2f} perc: {perc_loss:<4.2f} w_norm: {w_norm_loss:<4.2f} noise: {float(reg_loss):<5.2f}')
# Save projected W for each optimization step.
w_out[step] = w_opt.detach().cpu()[0]
# Normalize noise.
if optimize_noise:
with torch.no_grad():
for buf in noise_bufs.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
if w_out.shape[1] == 1:
w_out = w_out.repeat([1, G.mapping.num_ws, 1])
return w_out
def project_pti(
G,
target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
w_pivot: torch.Tensor,
c: torch.Tensor,
*,
num_steps = 1000,
initial_learning_rate = 3e-4,
lr_rampdown_length = 0.25,
lr_rampup_length = 0.05,
verbose = False,
device: torch.device
):
assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution)
def logprint(*args):
if verbose:
print(*args)
G = copy.deepcopy(G).train().requires_grad_(True).to(device) # type: ignore
# Load VGG16 feature detector.
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
with dnnlib.util.open_url(url) as f:
vgg16 = torch.jit.load(f).eval().to(device)
# Features for target image.
target_images = target.unsqueeze(0).to(device).to(torch.float32) / 255.0 * 2 - 1
target_images_perc = (target_images + 1) * (255/2)
if target_images_perc.shape[2] > 256:
target_images_perc = F.interpolate(target_images_perc, size=(256, 256), mode='area')
target_features = vgg16(target_images_perc, resize_images=False, return_lpips=True)
w_pivot = w_pivot.to(device).detach()
optimizer = torch.optim.Adam(G.parameters(), betas=(0.9, 0.999), lr=initial_learning_rate)
out_params = []
for step in range(num_steps):
# Learning rate schedule.
# t = step / num_steps
# lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
# lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
# lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
# lr = initial_learning_rate * lr_ramp
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
# Synth images from opt_w.
synth_images = G.synthesis(w_pivot, c=c, noise_mode='const')['image']
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
synth_images_perc = (synth_images + 1) * (255/2)
if synth_images_perc.shape[2] > 256:
synth_images_perc = F.interpolate(synth_images_perc, size=(256, 256), mode='area')
# Features for synth images.
synth_features = vgg16(synth_images_perc, resize_images=False, return_lpips=True)
perc_loss = (target_features - synth_features).square().sum(1).mean()
mse_loss = (target_images - synth_images).square().mean()
loss = 0.1 * mse_loss + perc_loss
# Step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
logprint(f'step: {step+1:>4d}/{num_steps} mse: {mse_loss:<4.2f} perc: {perc_loss:<4.2f}')
if step == num_steps - 1 or step % 10 == 0:
out_params.append(copy.deepcopy(G).eval().requires_grad_(False).cpu())
return out_params
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--target', 'target_fname', help='Target image file to project to', required=True, metavar='FILE|DIR')
@click.option('--idx', help='index from dataset', type=int, default=0, metavar='FILE|DIR')
@click.option('--num-steps', help='Number of optimization steps', type=int, default=500, show_default=True)
@click.option('--num-steps-pti', help='Number of optimization steps for pivot tuning', type=int, default=350, show_default=True)
@click.option('--seed', help='Random seed', type=int, default=303, show_default=True)
@click.option('--save-video', help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True)
@click.option('--outdir', help='Where to save the output images', required=True, metavar='DIR')
@click.option('--fps', help='Frames per second of final video', default=30, show_default=True)
def run_projection(
network_pkl: str,
target_fname: str,
idx: int,
outdir: str,
save_video: bool,
seed: int,
num_steps: int,
num_steps_pti: int,
fps: int,
):
"""Project given image to the latent space of pretrained network pickle.
Examples:
\b
python projector.py --outdir=out --target=~/mytargetimg.png \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
"""
np.random.seed(seed)
torch.manual_seed(seed)
# Load networks.
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as fp:
network_data = legacy.load_network_pkl(fp)
G = network_data['G_ema'].requires_grad_(False).to(device) # type: ignore
G.rendering_kwargs["ray_start"] = 2.35
if target_fname is not None:
dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=target_fname, use_labels=True, max_size=None, xflip=False)
dataset = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
target_fname = dataset._path + "/" + dataset._image_fnames[idx]
c = torch.from_numpy(dataset._get_raw_labels()[idx:idx+1]).to(device)
print(f"projecting: [{idx}] {target_fname}")
print(f"camera matrix: {c.shape}")
# Load target image.
target_pil = PIL.Image.open(target_fname).convert('RGB')
w, h = target_pil.size
s = min(w, h)
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
target_uint8 = np.array(target_pil, dtype=np.uint8)
# Optimize projection.
start_time = perf_counter()
projected_w_steps = project(
G,
target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable
c=c,
num_steps=num_steps,
device=device,
verbose=True
)
print (f'Elapsed: {(perf_counter()-start_time):.1f} s')
G_steps = project_pti(
G,
target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable
w_pivot=projected_w_steps[-1:],
c=c,
num_steps=num_steps_pti,
device=device,
verbose=True
)
print (f'Elapsed: {(perf_counter()-start_time):.1f} s')
# Render debug output: optional video and projected image and W vector.
os.makedirs(outdir, exist_ok=True)
if save_video:
video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=fps, codec='libx264', bitrate='16M')
print (f'Saving optimization progress video "{outdir}/proj.mp4"')
for projected_w in projected_w_steps[::2]:
synth_image = G.synthesis(projected_w.unsqueeze(0).to(device), c=c, noise_mode='const')['image']
synth_image = (synth_image + 1) * (255/2)
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
for G_new in G_steps:
G_new.to(device)
synth_image = G_new.synthesis(projected_w_steps[-1].unsqueeze(0).to(device), c=c, noise_mode='const')['image']
synth_image = (synth_image + 1) * (255/2)
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
G_new.cpu()
video.close()
# Save final projected frame and W vector.
target_pil.save(f'{outdir}/target.png')
projected_w = projected_w_steps[-1]
G_final = G_steps[-1].to(device)
synth_image = G_final.synthesis(projected_w.unsqueeze(0).to(device), c=c, noise_mode='const')['image']
synth_image = (synth_image + 1) * (255/2)
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png')
np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy())
with open(f'{outdir}/fintuned_generator.pkl', 'wb') as f:
network_data["G_ema"] = G_final.eval().requires_grad_(False).cpu()
pickle.dump(network_data, f)
#----------------------------------------------------------------------------
if __name__ == "__main__":
run_projection() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------