-
Notifications
You must be signed in to change notification settings - Fork 93
/
catboost.py
796 lines (693 loc) · 39 KB
/
catboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
"""CatBoost gradient boosting by Yandex. Currently supports regression and binary classification."""
import copy, os, uuid
import datatable as dt
import numpy as np
import _pickle as pickle
from sklearn.preprocessing import LabelEncoder
from h2oaicore.models import CustomModel, MainModel
from h2oaicore.systemutils_more import arch_type
from h2oaicore.systemutils import config, physical_cores_count, ngpus_vis, save_obj, remove, user_dir, exp_dir, \
print_debug, IgnoreEntirelyError
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning, loggerdata
from h2oaicore.models import LightGBMModel
import inspect
# https://github.com/KwokHing/YandexCatBoost-Python-Demo
# https://catboost.ai/docs/concepts/python-usages-examples.html
class CatBoostModel(CustomModel):
_regression = True
_binary = True
_multiclass = True
_display_name = "CatBoost"
_description = "Yandex CatBoost GBM"
_can_use_multi_gpu = False # Can enable, but consumes too much memory
# WIP: leakage can't find _catboost module, unsure what special. Probably shift would fail too if used catboost.
_can_use_gpu = True
_force_gpu = False # force use of GPU regardless of what DAI says
_can_handle_categorical = True
_can_handle_non_numeric = True
_can_handle_text = False # catboost has issues when text is arbitrary and entirely unique across all rows
_used_return_params = True
_average_return_params = True
_fit_by_iteration = True
_fit_iteration_name = 'n_estimators'
_is_gbm = True # ensure final model changes n_estimators and learning_rate and complain if early stopping didn't work.
_predict_by_iteration = True
_predict_iteration_name = 'ntree_end'
_save_by_pickle = True # if False, use catboost save/load model as intermediate binary file
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
# Increase gpu_ram_part if know system is isolated
_make_logger = True # set to True to make logger
_show_logger_test = False # set to True to see how to send information to experiment logger
_show_task_test = False # set to True to see how task is used to send message to GUI
_min_one_hot_max_size = 4
_min_learning_rate_catboost = 0.005 # for catboost often for same low learning rate as xgb/lgb, too many trees
_parallel_task = True
_use_single_core_if_many = True
def __init__(self, context=None,
unfitted_pipeline_path=None,
transformed_features=None,
original_user_cols=None,
date_format_strings=None,
**kwargs):
super().__init__(context=context, unfitted_pipeline_path=unfitted_pipeline_path,
transformed_features=transformed_features, original_user_cols=original_user_cols,
date_format_strings=date_format_strings, **kwargs)
self.input_dict = dict(context=context, unfitted_pipeline_path=unfitted_pipeline_path,
transformed_features=transformed_features,
original_user_cols=original_user_cols,
date_format_strings=date_format_strings, **kwargs)
@staticmethod
def is_enabled():
return not (arch_type == "ppc64le")
@staticmethod
def do_acceptance_test():
return True
@staticmethod
def acceptance_test_timeout():
return 20.0
@property
def has_pred_contribs(self):
return True
@property
def has_output_margin(self):
return True
_modules_needed_by_name = ['catboost==1.2.5']
def set_default_params(self,
accuracy=10, time_tolerance=10, interpretability=1,
**kwargs):
# https://catboost.ai/docs/concepts/python-reference_parameters-list.html
# https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
# optimize for final model as transcribed from best lightgbm model
n_estimators = self.params_base.get('n_estimators', 100)
learning_rate = self.params_base.get('learning_rate', config.min_learning_rate)
early_stopping_rounds_default = min(500, max(1, int(n_estimators / 4)))
early_stopping_rounds = self.params_base.get('early_stopping_rounds', early_stopping_rounds_default)
self.params = {'bootstrap_type': 'Bayesian',
'n_estimators': n_estimators,
'learning_rate': learning_rate,
'early_stopping_rounds': early_stopping_rounds,
'max_depth': 8,
'grow_policy': 'depthwise',
}
dummy = kwargs.get('dummy', False)
ensemble_level = kwargs.get('ensemble_level', 0)
train_shape = kwargs.get('train_shape', (1, 1))
valid_shape = kwargs.get('valid_shape', (1, 1))
self.get_gbm_main_params_evolution(params=self.params, dummy=dummy, accuracy=accuracy,
num_classes=self.num_classes,
ensemble_level=ensemble_level, train_shape=train_shape,
valid_shape=valid_shape)
for k in kwargs:
if k in self.params:
self.params[k] = copy.deepcopy(kwargs[k])
# self.params['has_time'] # should use this if TS problem
if self._can_handle_categorical:
# less than 2 is risky, can get stuck in learning
max_cat_to_onehot_list = [4, 10, 20, 40, config.max_int_as_cat_uniques]
self.params['one_hot_max_size'] = MainModel.get_one(max_cat_to_onehot_list, get_best=True)
uses_gpus, n_gpus = self.get_uses_gpus(self.params)
if uses_gpus:
self.params['one_hot_max_size'] = min(self.params['one_hot_max_size'], 255)
else:
self.params['one_hot_max_size'] = min(self.params['one_hot_max_size'], 65535)
self.params['learning_rate'] = max(self._min_learning_rate_catboost, self.params['learning_rate'])
# fill mutatable params with best for left over if default didn't fill
params = copy.deepcopy(self.params)
self.mutate_params(accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability,
get_best=True, **kwargs)
params_from_mutate = copy.deepcopy(self.params)
for k in params_from_mutate:
if k not in params:
params[k] = params_from_mutate[k]
self.params = copy.deepcopy(params)
def mutate_params(self, **kwargs):
fake_lgbm_model = LightGBMModel(**self.input_dict)
fake_lgbm_model.params = self.params.copy()
fake_lgbm_model.params_base = self.params_base.copy()
for k, v in fake_lgbm_model.params_base.items():
if k in fake_lgbm_model.params:
fake_lgbm_model.params[k] = fake_lgbm_model.params_base[k]
kwargs['train_shape'] = kwargs.get('train_shape', (10000, 500))
kwargs['from_catboost'] = True
fake_lgbm_model.mutate_params(**kwargs)
self.params.update(fake_lgbm_model.params)
fake_lgbm_model.transcribe_params(params=self.params, **kwargs)
self.params.update(fake_lgbm_model.lightgbm_params)
get_best = kwargs.get('get_best', True)
if get_best is None:
get_best = True
trial = kwargs.get('trial', False)
if trial is None:
trial = False
# see what else can mutate, need to know things don't want to preserve
uses_gpus, n_gpus = self.get_uses_gpus(self.params)
if not uses_gpus:
colsample_bylevel_list = [0.3, 0.5, 0.9, 1.0]
self.params['colsample_bylevel'] = MainModel.get_one(colsample_bylevel_list, get_best=get_best,
best_type="first", name="colsample_bylevel",
trial=trial)
if not (uses_gpus and self.num_classes > 2):
boosting_type_list = ['Plain', 'Ordered']
self.params['boosting_type'] = MainModel.get_one(boosting_type_list, get_best=get_best, best_type="first",
name="boosting_type", trial=trial)
if self._can_handle_categorical:
max_cat_to_onehot_list = [4, 10, 20, 40, config.max_int_as_cat_uniques]
if uses_gpus:
max_one_hot_max_size = 255
else:
max_one_hot_max_size = 65535
max_cat_to_onehot_list = sorted(set([min(x, max_one_hot_max_size) for x in max_cat_to_onehot_list]))
log = True if max(max_cat_to_onehot_list) > 1000 else False
self.params['one_hot_max_size'] = MainModel.get_one(max_cat_to_onehot_list, get_best=get_best,
best_type="max", name="one_hot_max_size", trial=trial,
log=log)
if not uses_gpus:
sampling_frequency_list = ['PerTree', 'PerTreeLevel', 'PerTreeLevel', 'PerTreeLevel']
self.params['sampling_frequency'] = MainModel.get_one(sampling_frequency_list, get_best=get_best,
best_type="first", name="sampling_frequency",
trial=trial)
bootstrap_type_list = ['Bayesian', 'Bayesian', 'Bayesian', 'Bayesian', 'Bernoulli', 'MVS', 'Poisson', 'No']
if not uses_gpus:
bootstrap_type_list.remove('Poisson')
if uses_gpus:
bootstrap_type_list.remove('MVS') # undocumented CPU only
self.params['bootstrap_type'] = MainModel.get_one(bootstrap_type_list, get_best=get_best, best_type="first",
name="bootstrap_type", trial=trial)
# lgbm usage already sets subsample
# if self.params['bootstrap_type'] in ['Poisson', 'Bernoulli']:
# subsample_list = [0.5, 0.66, 0.66, 0.9]
# # will get pop'ed if not Poisson/Bernoulli
# self.params['subsample'] = MainModel.get_one(subsample_list, get_best=get_best, best_type="first", name="subsample", trial=trial)
if self.params['bootstrap_type'] in ['Bayesian']:
bagging_temperature_list = [0.0, 0.1, 0.5, 0.9, 1.0]
self.params['bagging_temperature'] = MainModel.get_one(bagging_temperature_list, get_best=get_best,
best_type="first", name="bagging_temperature",
trial=trial)
# overfit protection different sometimes compared to early_stopping_rounds
# self.params['od_type']
# self.params['od_pval']
# self.params['od_wait']
self.params['learning_rate'] = max(config.min_learning_rate,
max(self._min_learning_rate_catboost, self.params['learning_rate']))
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
logger = None
if self._make_logger:
# Example use of logger, with required import of:
# from h2oaicore.systemutils import make_experiment_logger, loggerinfo
# Can use loggerwarning, loggererror, etc. for different levels
if self.context and self.context.experiment_id:
logger = make_experiment_logger(experiment_id=self.context.experiment_id, tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir)
if self._show_logger_test:
loggerinfo(logger, "TestLOGGER: Fit CatBoost")
if self._show_task_test:
# Example task sync operations
if hasattr(self, 'testcount'):
self.test_count += 1
else:
self.test_count = 0
# The below generates a message in the GUI notifications panel
if self.test_count == 0 and self.context and self.context.experiment_id:
warning = "TestWarning: First CatBoost fit for this model instance"
loggerwarning(logger, warning)
task = kwargs.get('task')
if task:
task.sync(key=self.context.experiment_id, progress=dict(type='warning', data=warning))
task.flush()
# The below generates a message in the GUI top-middle panel above the progress wheel
if self.test_count == 0 and self.context and self.context.experiment_id:
message = "Tuning CatBoost"
loggerinfo(logger, message)
task = kwargs.get('task')
if task:
task.sync(key=self.context.experiment_id, progress=dict(type='update', message=message))
task.flush()
from catboost import CatBoostClassifier, CatBoostRegressor, EFstrType
# label encode target and setup type of problem
lb = LabelEncoder()
if self.num_classes >= 2:
lb.fit(self.labels)
y = lb.transform(y)
if eval_set is not None:
valid_X = eval_set[0][0]
valid_y = eval_set[0][1]
valid_y = lb.transform(valid_y)
eval_set = [(valid_X, valid_y)]
self.params.update({'objective': 'Logloss'})
if self.num_classes > 2:
self.params.update({'objective': 'MultiClass'})
if isinstance(X, dt.Frame):
orig_cols = list(X.names)
numeric_cols = list(X[:, [bool, int, float]].names)
else:
orig_cols = list(X.columns)
numeric_cols = list(X.select_dtypes([np.number]).columns)
# unlike lightgbm that needs label encoded categoricals, catboots can take raw strings etc.
self.params['cat_features'] = [i for i, x in enumerate(orig_cols) if
'CatOrig:' in x or 'Cat:' in x or x not in numeric_cols]
if not self.get_uses_gpus(self.params):
# monotonicity constraints not available for GPU for catboost
# get names of columns in same order
X_names = list(dt.Frame(X).names)
X_numeric = self.get_X_ordered_numerics(X)
X_numeric_names = list(X_numeric.names)
_, _, constraints, self.set_monotone_constraints(X=X_numeric, y=y)
# if non-numerics, then fix those to have 0 constraint
self.params['monotone_constraints'] = [0] * len(X_names)
colnumi = 0
for coli in X_names:
if X_names[coli] in X_numeric_names:
self.params['monotone_constraints'][coli] = constraints[colnumi]
colnumi += 1
if isinstance(X, dt.Frame) and len(self.params['cat_features']) == 0:
# dt -> catboost internally using buffer leaks, so convert here
# assume predict is after pipeline collection or in subprocess so needs no protection
X = X.to_numpy() # don't assign back to X so don't damage during predict
X = np.ascontiguousarray(X, dtype=np.float32 if config.data_precision == "float32" else np.float64)
if eval_set is not None:
valid_X = eval_set[0][0].to_numpy() # don't assign back to X so don't damage during predict
valid_X = np.ascontiguousarray(valid_X,
dtype=np.float32 if config.data_precision == "float32" else np.float64)
valid_y = eval_set[0][1]
eval_set = [(valid_X, valid_y)]
if eval_set is not None:
valid_X_shape = eval_set[0][0].shape
else:
valid_X_shape = None
X, eval_set = self.process_cats(X, eval_set, orig_cols)
# modify self.params_base['gpu_id'] based upon actually-available GPU based upon training and valid shapes
self.acquire_gpus_function(train_shape=X.shape, valid_shape=valid_X_shape)
params = copy.deepcopy(self.params) # keep separate, since then can be pulled form lightgbm params
params = self.transcribe_params(params=params, **kwargs)
if logger is not None:
loggerdata(logger, "CatBoost parameters: params_base : %s params: %s catboost_params: %s" % (
str(self.params_base), str(self.params), str(params)))
if self.num_classes == 1:
self.model = CatBoostRegressor(**params)
else:
self.model = CatBoostClassifier(**params)
# Hit sometimes: Exception: catboost/libs/data_new/quantization.cpp:779: All features are either constant or ignored.
if self.num_classes == 1:
# assume not mae, which would use median
# baseline = [np.mean(y)] * len(y)
baseline = None
else:
baseline = None
kwargs_fit = dict(baseline=baseline, eval_set=eval_set)
pickle_path = None
if config.debug_daimodel_level >= 2:
self.uuid = str(uuid.uuid4())[:6]
pickle_path = os.path.join(exp_dir(), "catboost%s.tmp.pickle" % self.uuid)
save_obj((self.model, X, y, sample_weight, kwargs_fit), pickle_path)
# FIT (with migration safety before hyperopt/Optuna function added)
try:
if hasattr(self, 'dask_or_hyper_or_normal_fit'):
self.dask_or_hyper_or_normal_fit(X, y, sample_weight=sample_weight, kwargs=kwargs, **kwargs_fit)
else:
self.model.fit(X, y, sample_weight=sample_weight, **kwargs_fit)
except Exception as e:
if "All features are either constant or ignored" in str(e):
raise IgnoreEntirelyError(str(e))
raise
if config.debug_daimodel_level <= 2:
remove(pickle_path)
# https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
# need to move to wrapper
if self.model.get_best_iteration() is not None:
iterations = self.model.get_best_iteration() + 1
else:
iterations = self.params['n_estimators']
# must always set best_iterations
self.model_path = None
importances = copy.deepcopy(self.model.feature_importances_)
if not self._save_by_pickle:
self.uuid = str(uuid.uuid4())[:6]
model_file = "catboost_%s.bin" % str(self.uuid)
self.model_path = os.path.join(self.context.experiment_tmp_dir, model_file)
self.model.save_model(self.model_path)
with open(self.model_path, mode='rb') as f:
model = f.read()
else:
model = self.model
self.set_model_properties(model=model, # overwrites self.model object with bytes if not using pickle
features=orig_cols,
importances=importances,
iterations=iterations)
def process_cats(self, X, eval_set, orig_cols):
# ensure catboost treats as cat by making str
if len(self.params['cat_features']) > 0:
X = X.to_pandas()
if eval_set is not None:
valid_X = eval_set[0][0]
valid_y = eval_set[0][1]
valid_X = valid_X.to_pandas()
eval_set = [(valid_X, valid_y)]
for coli in self.params['cat_features']:
col = orig_cols[coli]
if 'CatOrig:' in col:
cattype = str
# must be string for catboost
elif 'Cat:' in col:
cattype = int
else:
cattype = str # if was marked as non-numeric, must become string (e.g. for leakage/shift)
if cattype is not None:
if cattype == int:
# otherwise would hit: ValueError: Cannot convert non-finite values (NA or inf) to integer
X[col] = X[col].replace([np.inf, -np.inf], np.nan)
X[col] = X[col].fillna(value=0)
X[col] = X[col].astype(cattype)
if eval_set is not None:
valid_X = eval_set[0][0]
valid_y = eval_set[0][1]
if cattype == int:
# otherwise would hit: ValueError: Cannot convert non-finite values (NA or inf) to integer
valid_X[col] = valid_X[col].replace([np.inf, -np.inf], np.nan)
valid_X[col] = valid_X[col].fillna(value=0)
valid_X[col] = valid_X[col].astype(cattype)
eval_set = [(valid_X, valid_y)]
return X, eval_set
def predict(self, X, y=None, **kwargs):
model, features, importances, iterations = self.get_model_properties()
if not self._save_by_pickle:
from catboost import CatBoostClassifier, CatBoostRegressor, EFstrType
if self.num_classes >= 2:
from_file = CatBoostClassifier()
else:
from_file = CatBoostRegressor()
with open(self.model_path, mode='wb') as f:
f.write(model)
model = from_file.load_model(self.model_path)
# FIXME: Do equivalent throttling of predict size like def _predict_internal(self, X, **kwargs), wrap-up.
if isinstance(X, dt.Frame) and len(self.params['cat_features']) == 0:
# dt -> lightgbm internally using buffer leaks, so convert here
# assume predict is after pipeline collection or in subprocess so needs no protection
X = X.to_numpy() # don't assign back to X so don't damage during predict
X = np.ascontiguousarray(X, dtype=np.float32 if config.data_precision == "float32" else np.float64)
X, eval_set = self.process_cats(X, None, self.feature_names_fitted)
pred_contribs = kwargs.get('pred_contribs', False)
output_margin = kwargs.get('output_margin', False)
fast_approx = kwargs.pop('fast_approx', False)
if fast_approx:
iterations = min(config.fast_approx_num_trees, iterations)
# implicit import
from catboost import CatBoostClassifier, CatBoostRegressor, EFstrType, Pool
n_jobs = max(1, physical_cores_count)
if not pred_contribs and not output_margin:
if self.num_classes >= 2:
preds = model.predict_proba(
X,
ntree_start=0,
ntree_end=iterations, # index of first tree *not* to be used
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported
)
if preds.shape[1] == 2:
return preds[:, 1]
else:
return preds
else:
return model.predict(
X,
ntree_start=0,
ntree_end=iterations, # index of first tree *not* to be used
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported
)
elif output_margin:
# uses "predict" for raw for any class
preds = model.predict(
X,
prediction_type="RawFormulaVal",
ntree_start=0,
ntree_end=iterations, # index of first tree *not* to be used
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported
)
if len(preds.shape) > 1 and preds.shape[1] == 2 and self.num_classes == 2:
return preds[:, 1]
else:
return preds
elif pred_contribs:
# For Shapley, doesn't come from predict
# For regression/binary, shap is shape of (rows, features + bias)
# for multiclass, shap is shape of (rows, classes, features + bias)
data = Pool(X, label=y, cat_features=self.params['cat_features'])
if fast_approx:
# https://github.com/catboost/catboost/issues/1146
# https://github.com/catboost/catboost/issues/1535
# can't specify trees, but they have approx version
# Regular, Exact, or Approximate
shap_calc_type = "Approximate"
else:
shap_calc_type = "Regular"
# See also shap_mode
# help(CatBoostClassifier.get_feature_importance)
print_debug("shap_calc_type: %s" % shap_calc_type)
pickle_path = None
if config.debug_daimodel_level >= 2:
self.uuid = str(uuid.uuid4())[:6]
pickle_path = os.path.join(exp_dir(), "catboost_shappredict%s.tmp.pickle" % self.uuid)
model.save_model(os.path.join(exp_dir(), "catshapproblem%s.catboost.model" % self.uuid))
# save_obj((self, self.model, model, X, y, kwargs, shap_calc_type, self.params['cat_features']), pickle_path)
save_obj((model, X, y, kwargs, shap_calc_type, self.params['cat_features']), pickle_path)
preds_shap = model.get_feature_importance(
data=data,
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported,
type=EFstrType.ShapValues,
shap_calc_type=shap_calc_type,
)
# repair broken shap sum: https://github.com/catboost/catboost/issues/1125
print_debug("shap_fix")
preds_raw = model.predict(
X,
prediction_type="RawFormulaVal",
ntree_start=0,
ntree_end=iterations, # index of first tree *not* to be used
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported
)
if self.num_classes <= 2:
axis = 1
else:
axis = 2
orig_sum = np.sum(preds_shap, axis=axis)
print_debug("shap_fix2")
# avoid division by 0, need different trick, e.g. change baseline, to fix that case
if axis == 1:
orig_sum[orig_sum[:] == 0.0] = 1.0
preds_shap = preds_shap * preds_raw[:, None] / orig_sum[:, None]
else:
# each feature and each class must sum up
orig_sum[orig_sum[:, :] == 0.0] = 1.0
preds_shap = preds_shap * preds_raw[:, :, None] / orig_sum[:, :, None]
if config.hard_asserts and config.debug_daimodel_level >= 2:
print_debug("shap_check")
model.save_model(os.path.join(exp_dir(), "catshapproblem"))
pickle.dump((X, y, self.params['cat_features']),
open(os.path.join(exp_dir(), "catshapproblem.pkl"), "wb"))
preds_raw = model.predict(
X,
prediction_type="RawFormulaVal",
ntree_start=0,
ntree_end=iterations, # index of first tree *not* to be used
thread_count=self.params_base.get('n_jobs', n_jobs), # -1 is not supported
)
assert np.isclose(preds_raw,
np.sum(preds_shap, axis=axis)).all(), "catboost shapley does not sum up correctly"
if config.debug_daimodel_level <= 2:
remove(pickle_path)
if axis == 1:
return preds_shap
else:
# DAI expects (shape rows) * (classes x (features + 1)) with "columns" as blocks of
# feature_0_class_0 feature_0_class_0 ... feature_0_class_1 feature_1_class_1 ...
return preds_shap.reshape(preds_shap.shape[0], preds_shap.shape[1] * preds_shap.shape[2])
else:
raise RuntimeError("No such case")
def transcribe_params(self, params=None, **kwargs):
if params is None:
params = self.params # reference
params = params.copy() # don't contaminate DAI params, since we know we use lgbm-xgb as base
has_eval_set = self.have_eval_set(kwargs) # only needs (and does) operate at fit-time
from catboost import CatBoostClassifier, CatBoostRegressor, EFstrType
fullspec_regression = inspect.getfullargspec(CatBoostRegressor)
kwargs_regression = {k: v for k, v in zip(fullspec_regression.args, fullspec_regression.defaults)}
fullspec_classification = inspect.getfullargspec(CatBoostClassifier)
kwargs_classification = {k: v for k, v in zip(fullspec_classification.args, fullspec_classification.defaults)}
if self.num_classes == 1:
allowed_params = kwargs_regression
else:
allowed_params = kwargs_classification
params_copy = copy.deepcopy(params)
for k, v in params_copy.items():
if k not in allowed_params.keys():
del params[k]
# now transcribe
k = 'boosting_type'
if k in params:
params[k] = 'Plain'
k = 'grow_policy'
if k in params:
params[k] = 'Depthwise' if params[k] == 'depthwise' else 'Lossguide'
k = 'eval_metric'
if k in params and params[k] is not None and params[k].upper() == 'AUC':
params[k] = 'AUC'
map = {'regression': 'RMSE', 'mse': 'RMSE', 'mae': 'MAE', "mape": 'MAPE', "huber": 'Huber', "fair": 'FairLoss',
"rmse": "RMSE",
"gamma": "RMSE", # unsupported by catboost
"tweedie": "Tweedie", "poisson": "Poisson", "quantile": "Quantile",
'binary': 'Logloss',
'auc': 'AUC', "xentropy": 'CrossEntropy',
'multiclass': 'MultiClass'}
k = 'objective'
if k in params and params[k] in map.keys():
params[k] = map[params[k]]
k = 'eval_metric'
if k in params and params[k] is not None and params[k] in map.keys():
params[k] = map[params[k]]
if 'objective' in params:
# don't randomly choose these since then model not stable GA -> final
# but backup shouldn't really be used AFAIK
if params['objective'] == 'Huber':
backup = float(config.huber_alpha_list[0])
params['delta'] = params.pop('alpha', backup)
if params['objective'] == 'Quantile':
backup = float(config.quantile_alpha[0])
params['delta'] = params.pop('alpha', backup)
if params['objective'] == 'Tweedie':
backup = float(config.tweedie_variance_power_list[0])
params['tweedie_variance_power'] = params.pop('tweedie_variance_power', backup)
if params['objective'] == 'FairLoss':
backup = float(config.fair_c_list[0])
params['smoothness'] = params.pop('fair_c', backup)
params.pop('verbose', None)
params.pop('verbose_eval', None)
params.pop('logging_level', None)
if 'grow_policy' in params:
if params['grow_policy'] == 'Lossguide':
params.pop('max_depth', None)
if params['grow_policy'] == 'Depthwise':
params.pop('num_leaves', None)
else:
params['grow_policy'] = 'SymmetricTree'
uses_gpus, n_gpus = self.get_uses_gpus(params)
if params['task_type'] == 'CPU':
params.pop('grow_policy', None)
params.pop('num_leaves', None)
params.pop('max_leaves', None)
params.pop('min_data_in_leaf', None)
params.pop('min_child_samples', None)
if params['task_type'] == 'GPU':
params.pop('colsample_bylevel', None) # : 0.35
if 'grow_policy' in params and params['grow_policy'] in ['Depthwise', 'SymmetricTree']:
if 'max_depth' in params and params['max_depth'] in [0, -1]:
params['max_depth'] = max(2, int(np.log(params.get('num_leaves', 2 ** 6))))
else:
params.pop('max_depth', None)
params.pop('depth', None)
if 'grow_policy' in params and params['grow_policy'] == 'Lossguide':
# if 'num_leaves' in params and params['num_leaves'] == -1:
# params['num_leaves'] = 2 ** params.get('max_depth', 6)
if 'max_leaves' in params and params['max_leaves'] in [0, -1]:
params['max_leaves'] = 2 ** params.get('max_depth', 6)
else:
params.pop('max_leaves', None)
if 'num_leaves' in params and 'max_leaves' in params:
params.pop('num_leaves', None)
# apply limits
if 'max_leaves' in params:
params['max_leaves'] = min(params['max_leaves'], 65536)
if 'max_depth' in params:
params['max_depth'] = min(params['max_depth'], 16)
params.update({'train_dir': user_dir(),
'allow_writing_files': False,
'thread_count': self.params_base.get('n_jobs', 4)})
if 'reg_lambda' in params and params['reg_lambda'] <= 0.0:
params['reg_lambda'] = 3.0 # assume meant unset
if self._can_handle_categorical:
if 'max_cat_to_onehot' in params:
params['one_hot_max_size'] = params['max_cat_to_onehot']
params.pop('max_cat_to_onehot', None)
if uses_gpus:
params['one_hot_max_size'] = min(params.get('one_hot_max_size', 255), 255)
else:
params['one_hot_max_size'] = min(params.get('one_hot_max_size', 65535), 65535)
if 'one_hot_max_size' in params:
params['one_hot_max_size'] = max(self._min_one_hot_max_size, params['one_hot_max_size'])
params['max_bin'] = params.get('max_bin', 254)
if params['task_type'] == 'CPU':
params['max_bin'] = min(params['max_bin'], 254) # https://github.com/catboost/catboost/issues/1010
if params['task_type'] == 'GPU':
params['max_bin'] = min(params['max_bin'], 127) # https://github.com/catboost/catboost/issues/1010
if uses_gpus:
# https://catboost.ai/docs/features/training-on-gpu.html
params['devices'] = "%d-%d" % (
self.params_base.get('gpu_id', 0), self.params_base.get('gpu_id', 0) + n_gpus - 1)
# params['gpu_ram_part'] = 0.3 # per-GPU, assumes GPU locking or no other experiments running
if self.num_classes > 2:
params.pop("eval_metric", None)
params['train_dir'] = self.context.experiment_tmp_dir
params['allow_writing_files'] = False
# assume during fit self.params_base could have been updated
assert 'n_estimators' in params
assert 'learning_rate' in params
params['n_estimators'] = self.params_base.get('n_estimators', 100)
params['learning_rate'] = self.params_base.get('learning_rate', config.min_learning_rate)
params['learning_rate'] = min(params['learning_rate'], 0.5) # 1.0 leads to illegal access on GPUs
params['learning_rate'] = max(config.min_learning_rate,
max(self._min_learning_rate_catboost, params['learning_rate']))
if 'early_stopping_rounds' not in params and has_eval_set:
params['early_stopping_rounds'] = 150 # temp fix
# assert 'early_stopping_rounds' in params
if uses_gpus:
params.pop('sampling_frequency', None)
if not uses_gpus and params['bootstrap_type'] == 'Poisson':
params['bootstrap_type'] = 'Bayesian' # revert to default
if uses_gpus and params['bootstrap_type'] == 'MVS':
params['bootstrap_type'] = 'Bayesian' # revert to default
if 'bootstrap_type' not in params or params['bootstrap_type'] not in ['Poisson', 'Bernoulli']:
params.pop('subsample', None) # only allowed for those 2 bootstrap_type settings
if params['bootstrap_type'] not in ['Bayesian']:
params.pop('bagging_temperature', None)
if not (self.num_classes == 2 and params['objective'] == 'Logloss'):
params.pop('scale_pos_weight', None)
# go back to some default eval_metric
if self.num_classes == 1:
if 'eval_metric' not in params or params['eval_metric'] not in ['MAE', 'MAPE', 'Poisson', 'Quantile',
'RMSE', 'LogLinQuantile', 'Lq',
'Huber', 'Expectile', 'FairLoss',
'NumErrors', 'SMAPE', 'R2', 'MSLE',
'MedianAbsoluteError']:
params['eval_metric'] = 'RMSE'
elif self.num_classes == 2:
if 'eval_metric' not in params or params['eval_metric'] not in ['Logloss', 'CrossEntropy', 'Precision',
'Recall', 'F1', 'BalancedAccuracy',
'BalancedErrorRate', 'MCC', 'Accuracy',
'CtrFactor', 'AUC',
'NormalizedGini', 'BrierScore', 'HingeLoss',
'HammingLoss', 'ZeroOneLoss',
'Kappa', 'WKappa',
'LogLikelihoodOfPrediction']:
params['eval_metric'] = 'Logloss'
else:
if 'eval_metric' not in params or params['eval_metric'] not in ['MultiClass', 'MultiClassOneVsAll',
'Precision', 'Recall', 'F1', 'TotalF1',
'MCC', 'Accuracy', 'HingeLoss',
'HammingLoss', 'ZeroOneLoss', 'Kappa',
'WKappa', 'AUC']:
params['eval_metric'] = 'MultiClass'
# set system stuff here
params['silent'] = self.params_base.get('silent', True)
if config.debug_daimodel_level >= 1:
params['silent'] = False # Can enable for tracking improvement in console/dai.log if have access
params['random_state'] = self.params_base.get('random_state', 1234)
params['thread_count'] = self.params_base.get('n_jobs', max(1, physical_cores_count)) # -1 is not supported
return params
def get_uses_gpus(self, params):
params['task_type'] = 'CPU' if self.params_base.get('n_gpus', 0) == 0 else 'GPU'
if self._force_gpu:
params['task_type'] = 'GPU'
n_gpus = self.params_base.get('n_gpus', 0)
if self._force_gpu:
n_gpus = 1
if n_gpus == -1:
n_gpus = ngpus_vis
uses_gpus = params['task_type'] == 'GPU' and n_gpus > 0
return uses_gpus, n_gpus