-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjulia.c
102 lines (89 loc) · 3.08 KB
/
julia.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* julia.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: gmiyakaw <[email protected]> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2022/12/08 10:48:41 by gmiyakaw #+# #+# */
/* Updated: 2022/12/21 10:18:01 by gmiyakaw ### ########.fr */
/* */
/* ************************************************************************** */
#include "fractol.h"
/*
The Julia set:
The Julia and Mandelbrot set are very related. Mandelbrot (the mathmathician)
devised his fractal while studying the Julia set. And it is a map for
when the Julia set becomes connected and disconnected, for a set value
of 'c'.
The Julia set uses pretty much the same formula as the Mandelbrot but
instead of checking every pixel to see if it is a part of the set, we
alternate the coordinates themselves. For every point in the complex
plane there is a different shape for the Julia set.
If that point is in the Mandelbrot set, the shape will be a single shape.
If not, then it will be isolated island that recurse a pattern into inifinty
If it's at the border it will take shapes similar to the ones we see in
the Mandelbrot set.
Julia set formula:
f(z) = z^n + c
where c is constant.
In pseudocode:
while (zx * zx + zy * zy < R**2 AND iteration < max_iteration)
{
xtemp = zx * zx - zy * zy
zy = 2 * zx * zy + cy
zx = xtemp + cx
source: https://en.wikipedia.org/wiki/Julia_set
*/
void gen_julia(t_data *f)
{
int x;
int y;
double pr;
double pi;
if (!f)
return ;
y = -1;
while (++y < HEIGHT)
{
pi = f->max_i + ((double)y * (f->min_i - f->max_i) / HEIGHT);
x = -1;
while (++x < LENGTH)
{
pr = f->min_r + ((double)x * (f->max_r - f->min_r) / LENGTH);
if (is_julia(pr, pi, f) == 0)
my_px_put(f->img_data, x, y, make_color(f));
else
my_px_put(f->img_data, x, y, create_trgb(0, 0, 0, 0));
}
}
mlx_put_image_to_window(f->mlx, f->win, f->img_data->img, 0, 0);
return ;
}
int is_julia(double zr, double zi, t_data *f)
{
double tmp;
int i;
i = 0;
while (i++ < MAX_ITERATION + f->resolution_shift)
{
if ((zr * zr + zi * zi) > 4)
{
f->count = i;
return (0);
}
tmp = zr * zr - zi * zi;
zi = 2 * zr * zi + f->julia_shifty;
zr = tmp + f->julia_shiftx;
}
f->count = i;
return (1);
}
void julia_shift(int x, int y, t_data *f)
{
f->julia_shiftx = f->min_r + (double)x * (f->max_r - f->min_i) / LENGTH;
f->julia_shifty = f->max_i + (double)y * (f->min_i - f->max_i) / HEIGHT;
ft_printf("New Julia Parameters: x = %d, y = %d\n", \
x, y);
return ;
}